首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   39篇
  国内免费   17篇
  2024年   2篇
  2023年   6篇
  2022年   17篇
  2021年   15篇
  2020年   16篇
  2019年   24篇
  2018年   27篇
  2017年   22篇
  2016年   25篇
  2015年   21篇
  2014年   20篇
  2013年   52篇
  2012年   16篇
  2011年   18篇
  2010年   13篇
  2009年   16篇
  2008年   17篇
  2007年   26篇
  2006年   13篇
  2005年   24篇
  2004年   15篇
  2003年   22篇
  2002年   16篇
  2001年   6篇
  2000年   7篇
  1999年   8篇
  1998年   14篇
  1997年   5篇
  1996年   10篇
  1995年   8篇
  1994年   3篇
  1993年   8篇
  1992年   5篇
  1991年   11篇
  1990年   8篇
  1989年   3篇
  1987年   2篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   6篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有576条查询结果,搜索用时 828 毫秒
31.
Epoxiconazole (CAS‐No. 133855‐98‐8) was recently shown to cause both a marked depletion of maternal estradiol blood levels and a significantly increased incidence of late fetal mortality when administered to pregnant rats throughout gestation (GD 7–18 or 21); estradiol supplementation prevented this epoxiconazole effect in rats (Stinchcombe et al., 2013), indicating that epoxiconazole‐mediated estradiol depletion is a critical key event for induction of late fetal resorptions in rats. For further elucidation of the mode of action, the placentas from these modified prenatal developmental toxicity experiments with 23 and 50 mg/kg bw/d epoxiconazole were subjected to a detailed histopathological examination. This revealed dose‐dependent placental degeneration characterized by cystic dilation of maternal sinuses in the labyrinth, leading to rupture of the interhemal membrane. Concomitant degeneration occurred in the trophospongium. Both placentas supporting live fetuses and late fetal resorptions were affected; the highest degree of severity was observed in placentas with late resorptions. Placental degeneration correlated with a severe decline in maternal serum estradiol concentration. Supplementation with 0.5 and 1.0 μg of the synthetic estrogen estradiol cyclopentylpropionate per day reduced the severity of the degeneration in placentas with live fetuses. The present study demonstrates that both the placental degeneration and the increased incidence of late fetal resorptions are due to decreased levels of estrogen, since estrogen supplementation ameliorates the former and abolishes the latter. Birth Defects Res (Part B) 98:208–221, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
32.
33.
Mammalian brain development commences during foeto-placental development and is strongly influenced by the epigenetic regulation of imprinted genes. The foetal placenta exerts considerable influence over the functioning of the adult maternal hypothalamus, and this occurs at the same time as the foetus itself is developing a hypothalamus. Thus, the action and interaction of two genomes in one individual, the mother, has provided a template for co-adaptive functions across generations that are important for maternal care and resource transfer, while co-adaptively shaping the mothering capabilities of each subsequent generation. The neocortex is complex, enabling behavioural diversity and cultural learning such that human individuals are behaviourally unique. Retrotransposons may, in part, be epigenetic mediators of such brain diversity. Interestingly some imprinted genes are themselves retrotransposon-derived, and retrotransposon silencing by DNA methylation is thought to have contributed to the evolutionary origins of imprint control regions. The neocortex has evolved to be adaptable and sustain both short-term and long-term synaptic connections that underpin learning and memory. The adapted changes are not themselves inherited, but the predisposing mechanisms for such epigenetic changes are heritable. This provides each generation with the same ability to make new adaptations while constrained by a transgenerational knowledge-based predisposition to preserve others.  相似文献   
34.
Comparative studies were made of the polymerization of l-aspartic and l-glutamic acid dialkyl esters using polyethylene glycol–modified papain as a catalyst in phosphate buffer (pH 7.5) and in benzene. Changes in the substrate specificity of papain and in the composition of oligomerized products were observed. In the buffer, the diethyl and di-n-propyl esters of l-glutamic acid were sufficiently converted to high molecular weight oligomers with the accumulation of dimer and trimer, but l-aspartic acid esters were very poor substrates. In benzene, l-aspartic acid esters became more reactive than L-glutamic acid esters. In particular, from l-aspartic acid dimethyl ester the product, which was mainly composed of heptamer to decamer, was obtained in a 90% yield. The reaction in benzene required desalted substrates and a small amount of water to proceed extensively.  相似文献   
35.
36.
37.
ABSTRACT

The establishment of a functional placenta is pivotal for normal fetal development and the maintenance of pregnancy. In the course of early placentation, trophoblast precursors differentiate into highly invasive trophoblast subtypes. These cells, referred to as extravillous trophoblasts (EVTs), penetrate the maternal uterus reaching as far as the inner third of the myometrium. One of the most fundamental functions of EVTs is the transformation of spiral arteries to establish the uteroplacental blood circulation assuring an adequate nutrient and gas supply to the developing fetus. To achieve this, specialized EVT subpopulations interact with maternal immune cells, provoke elastolysis in the arterial wall and replace the endothelial cells lining the spiral arteries to induce intraluminal vascular remodeling. These and other trophoblast-mediated processes are tightly controlled by paracrine signals from the maternal decidua and furthermore underlie an intrinsic cell-type specific program. Various severe pregnancy complications such as preeclampsia or intrauterine growth retardation are associated with abnormal EVT function, shallow invasion, and decreased blood flow to the placenta. Hence a better understanding of human trophoblast invasion seems mandatory to improve therapeutic intervention. This approach, however, requires a profound knowledge of the human placenta, its various trophoblast subtypes and in particular a better understanding of the regulatory network that controls the invasive phenotype of EVTs.  相似文献   
38.
The ATP‐binding cassette (ABC) transporters control placental transfer of several nutrients, steroids, immunological factors, chemicals, and drugs at the maternal‐fetal interface. We and others have demonstrated a gestational age‐dependent expression pattern of two ABC transporters, P‐glycoprotein and breast cancer resistance protein throughout pregnancy. However, no reports have comprehensively elucidated the expression pattern of all 50 ABC proteins, comparing first trimester and term human placentae. We hypothesized that placental ABC transporters are expressed in a gestational‐age dependent manner in normal human pregnancy. Using the TaqMan® Human ABC Transporter Array, we assessed the mRNA expression of all 50 ABC transporters in first (first trimester, n = 8) and third trimester (term, n = 12) human placentae and validated the resulting expression of selected ABC transporters using qPCR, Western blot and immunohistochemistry. A distinct gene expression profile of 30 ABC transporters was observed comparing first trimester vs. term placentae. Using individual qPCR in selected genes, we validated the increased expression of ABCA1 (P < 0.01), ABCA6 (P < 0.001), ABCA9 (P < 0.001) and ABCC3 (P < 0.001), as well as the decreased expression of ABCB11 (P < 0.001) and ABCG4 (P < 0.01) with advancing gestation. One important lipid transporter, ABCA6, was selected to correlate protein abundance and characterize tissue localization. ABCA6 exhibited increased protein expression towards term and was predominantly localized to syncytiotrophoblast cells. In conclusion, expression patterns of placental ABC transporters change as a function of gestational age. These changes are likely fundamental to a healthy pregnancy given the critical role that these transporters play in the regulation of steroidogenesis, immunological responses, and placental barrier function and integrity.  相似文献   
39.
We investigated the dynamic expression of calcium transporters, TRPV5 and TRPV6, in placenta and bone to determine their role in maternal and fetal calcium balance during gestation. In placenta, TRPV5 was expressed predominantly in syncytiotrophoblasts of the labyrinthine zone, whereas TRPV6 was expressed in spongiotrophoblasts of the junction zone. In bone, the two transporters were found in osteoblasts, osteoclasts, cartilage and bone matrices. During the first half of gestation, TRPV5 and TRPV6 levels in bone were increased on pregnancy day (P) 0.5, then decreased on P3.5 followed by a slight increase on P6.5. During the second half of pregnancy, both the proteins and their mRNAs gradually increased from P9.5 to P15.5?P17.5 in both bone and placenta, followed at parturition by relatively high amounts in placenta, but markedly decreased amounts in bone. The expression pattern is likely related to the fetal and maternal calcium requirement during gestation, which may be regulated by estrogen and other hormones, because the fetal demand for calcium is greatest during the last few days of gestation for rats; maternal calcium metabolism is designed to meet the calcium needs of the fetus during this period. We found that TRPV5 and TRPV6 are involved in calcium transport in the placenta and bone, and therefore play a role in calcium homeostasis during embryonic and fetal development.  相似文献   
40.
Trophoblast giant cells (TGCs) are the first terminally differentiated subtype to form in the trophoblast cell lineage in rodents. In addition to mediating implantation, they are the main endocrine cells of the placenta, producing several hormones which regulate the maternal endocrine and immune systems and promote maternal blood flow to the implantation site. Generally considered a homogeneous population, TGCs have been identified by their expression of genes encoding placental lactogen 1 or proliferin. In the present study, we have identified a number of TGC subtypes, based on morphology and molecular criteria and demonstrated a previously underappreciated diversity of TGCs. In addition to TGCs that surround the implantation site and form the interface with the maternal deciduas, we demonstrate at least three other unique TGC subtypes: spiral artery-associated TGCs, maternal blood canal-associated TGCs and a TGC within the sinusoidal spaces of the labyrinth layer of the placenta. All four TGC subtypes could be identified based on the expression patterns of four genes: Pl1, Pl2, Plf (encoded by genes of the prolactin/prolactin-like protein/placental lactogen gene locus), and Ctsq (from a placental-specific cathepsin gene locus). Each of these subtypes was detected in differentiated trophoblast stem cell cultures and can be differentially regulated; treatment with retinoic acid induces Pl1/Plf+ TGCs preferentially. Furthermore, cell lineage tracing studies indicated unique origins for different TGC subtypes, in contrast with previous suggestions that secondary TGCs all arise from Tpbpa+ ectoplacental cone precursors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号