首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1127篇
  免费   252篇
  国内免费   32篇
  1411篇
  2024年   12篇
  2023年   16篇
  2022年   21篇
  2021年   17篇
  2020年   63篇
  2019年   50篇
  2018年   69篇
  2017年   71篇
  2016年   61篇
  2015年   71篇
  2014年   84篇
  2013年   125篇
  2012年   51篇
  2011年   100篇
  2010年   64篇
  2009年   88篇
  2008年   50篇
  2007年   56篇
  2006年   50篇
  2005年   43篇
  2004年   52篇
  2003年   23篇
  2002年   22篇
  2001年   22篇
  2000年   17篇
  1999年   20篇
  1998年   13篇
  1997年   6篇
  1996年   1篇
  1995年   12篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1411条查询结果,搜索用时 8 毫秒
21.
X. Chen  J. Cai  Y. Hu 《Molecular simulation》2013,39(10-11):877-885
Insert-route density functional approach (IRDFT), modified fundamental measure theory (MFMT) and thermodynamic perturbation theory (TPT1 and TPT2) are combined to study the depletion force between colloidal particles in hard sphere/hard sphere chain mixtures which represent a model of systems containing colloids dispersed in an athermal polymer solution. The predicted results are compared to simulations showing the reliability of the method used which captures the main characteristics of depletion interaction between colloids induced by polymers. Results of TPT2 are slightly more repulsive and better than that of TPT1 especially when the inter-particle distance is small than the diameter of polymer segment indicating the essential influence of the three-body correlations. Effects of the polymer density, polymer chain length and size ratio of colloid to polymer segment on the depletion force are studied in detail. Due to a little deterioration of the prediction in the high density region, further improvement is anticipated to better balance the competition between the excluded-volume effect and the chain connectivity.  相似文献   
22.
Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.  相似文献   
23.
Maltose phosphorylase (EC 2.4.1.8) from Lactobacillus brevis was purified 29-fold over the crude extract. The final preparation was at least 80% pure and had a specific activity of 18 units/mg protein. The molecular weights of the native enzyme and of the component dissociated in sodium dodecyl sulfate were 150,000 and 80,000, respectively. The enzyme does not contain pyridoxal-5′-phosphate as a cofactor. It can not act on maltitol, malto-triitol, sucrose, lactose and trehalose, and essentially not on isomaltose, maltobionic acid, maltotriose and maltotetraose. Inhibitory effect was observed with CuSO4, HgCl2 and p-chloromercuribenzoate. Some other properties were also examined. A possibility of using this enzyme for the analysis of maltose was proposed.  相似文献   
24.
25.
Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3‐hexylthiophene) and measure the PCG dynamics in 50 fs–500 ns time scales with time‐resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter‐fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.  相似文献   
26.
Morphology and miscibility control are still a great challenge in polymer solar cells. Despite physical tools being applied, chemical strategies are still limited and complex. To finely tune blend miscibility to obtain optimized morphology, chemical steric engineering is proposed to systemically investigate its effects on optical and electronic properties, especially on a balance between crystallinity and miscibility. By changing the alkylthiol side chain orientation different steric effects are realized in three different polymers. Surprisingly, the photovoltaic device of the polymer PTBB‐m with middle steric structure affords a better power conversion efficiency, over 12%, compared to those of the polymers PTBB‐o and PTBB‐p with large or small steric structures, which could be attributed to a more balanced blend miscibility without sacrificing charge‐carrier transport. Space charge‐limited current, atomic force microscopy, grazing incidence wide angle X‐ray scattering, and resonant soft X‐ray scattering measurements show that the steric engineering of alkylthiol side chains can have significant impacts on polymer aggregation properties, blend miscibility, and photovoltaic performances. More important, the control of miscibility via the simple chemical approach has preliminarily proved its great potential and will pave a new avenue for optimizing the blend morphology.  相似文献   
27.
Here, an effective design strategy of polymer thermoelectric materials based on structural control in doped polymer semiconductors is presented. The strategy is illustrated for two archetypical polythiophenes, e.g., poly(2,5‐bis(3‐dodecyl‐2‐thienyl)thieno[3,2‐b]thiophene) (C12‐PBTTT) and regioregular poly(3‐hexylthiophene) (P3HT). FeCl3 doping of aligned films results in charge conductivities up to 2 × 105 S cm?1 and metallic‐like thermopowers similar to iodine‐doped polyacetylene. The films are almost optically transparent and show strongly polarized near‐infrared polaronic bands (dichroic ratio >10). The comparative study of structure–property correlations in P3HT and C12‐PBTTT identifies three conditions to obtain conductivities beyond 105 S cm?1: i) achieve high in‐plane orientation of conjugated polymers with high persistence length; ii) ensure uniform chain oxidation of the polymer backbones by regular intercalation of dopant molecules in the polymer structure without disrupting alignment of π‐stacked layers; and iii) maintain a percolating nanomorphology along the chain direction. The highly anisotropic conducting polymer films are ideal model systems to investigate the correlations between thermopower S and charge conductivity σ. A scaling law S ∝ σ?1/4 prevails along the chain direction, but a different S ∝ ?ln(σ) relation is observed perpendicular to the chains, suggesting different charge transport mechanisms. The simultaneous increase of charge conductivity and thermopower along the chain direction results in a substantial improvement of thermoelectric power factors up to 2 mW m?1 K?2 in C12‐PBTTT.  相似文献   
28.
The residues of phenothiazines and benzodiazepines in foods of animal origin are dangerous to consumers. For inspection of their abuses, this study for the first time reported on the use of a chemiluminescence array sensor for the simultaneous determination of four phenothiazines and five benzodiazepines in pig urine. Two molecularly imprinted polymers were coated in different wells of a conventional 96‐well microtiter plate as the recognition reagents. After sample loading, the absorbed analytes were initiated directly by using an imidazole enhanced bis(2,4,6‐trichlorophenyl)oxalate–hydrogen peroxide system to emit light. The assay process consisted of only one sample‐loading step prior to data acquisition, so one test was finished within 10 min. The limits of detection for the nine drugs in the pig urine were in a range of 0.1 to 0.6 pg/mL, and the recoveries from the fortified blank urine samples were in a range of 80.3 to 95%. Furthermore, the sensor could be reused six times. Therefore, this sensor could be used as a simple, rapid, sensitive and reusable tool for routine screening for residues of phenothiazines and benzodiazepines in pig urine.  相似文献   
29.
Combining the surface modification and molecular imprinting technique, a novel piezoelectric sensing platform with excellent molecular recognition capability was established for the detection of uric acid (UA) based on the immobilization of TiO2 nanoparticles onto quartz crystal microbalance (QCM) electrode and modification of molecularly imprinted TiO2 (MIT) layer on TiO2 nanoparticles. The performance of the fabricated biosensor was evaluated, and the results indicated that the biosensor exhibited high sensitivity in UA detection, with a linear range from 0.04 to 45 μM and a limit of detection of 0.01 μM. Moreover, the biosensor presented high selectivity towards UA in comparison with other interferents. The analytical application of the UA biosensor confirmed the feasibility of UA detection in urine sample.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号