首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44685篇
  免费   1661篇
  国内免费   1855篇
  2023年   432篇
  2022年   688篇
  2021年   734篇
  2020年   893篇
  2019年   1062篇
  2018年   1084篇
  2017年   919篇
  2016年   940篇
  2015年   930篇
  2014年   1960篇
  2013年   3413篇
  2012年   1381篇
  2011年   2080篇
  2010年   1475篇
  2009年   2017篇
  2008年   2191篇
  2007年   2190篇
  2006年   1846篇
  2005年   1764篇
  2004年   1424篇
  2003年   1385篇
  2002年   1152篇
  2001年   924篇
  2000年   819篇
  1999年   761篇
  1998年   792篇
  1997年   739篇
  1996年   721篇
  1995年   685篇
  1994年   701篇
  1993年   648篇
  1992年   598篇
  1991年   521篇
  1990年   507篇
  1989年   485篇
  1988年   434篇
  1987年   434篇
  1986年   307篇
  1985年   683篇
  1984年   975篇
  1983年   657篇
  1982年   749篇
  1981年   587篇
  1980年   530篇
  1979年   460篇
  1978年   295篇
  1977年   285篇
  1976年   247篇
  1975年   195篇
  1974年   197篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
161.
Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor   总被引:6,自引:0,他引:6  
Diazepam binding inhibitor (DBI), a peptide located in CNS neurons, blocks the binding of benzodiazepines and beta-carbolines to the allosteric modulatory sites of gamma-aminobutyric acid (GABAA) receptors. Subcellular fractionation studies of rat brain indicate that DBI is compartmentalized. DBI-like immunoreactivity is highly enriched in synaptosomes obtained by differential centrifugation in isotonic sucrose followed by a Percoll gradient. In synaptosomal lysate, DBI-like immunoreactivity is primarily associated with synaptic vesicles partially purified by differential centrifugation and continuous sucrose gradient. Depolarization induced by high K+ levels (50 mM) or veratridine (50 microM) released DBI stored in neurons of superfused slices of hypothalamus, hippocampus, striatum, and cerebral cortex. The high K+ level-induced release is Ca2+ dependent, and the release induced by veratridine is blocked by 1.7 microM tetrodotoxin. Depolarization released GABA and Met5-enkephalin-Arg6-Phe7 together with DBI. DBI is also released by veratridine depolarization, in a tetrodotoxin-sensitive fashion, from primary cultures of cerebral cortical neurons, but not from cortical astrocytes. Depolarization fails to release DBI from slices of liver and other peripheral organs. These data support the view that DBI may be released as a putative neuromodulatory substance from rat brain neurons.  相似文献   
162.
To elucidate the position of the peptide bond in glutamyl-taurine this dipeptide was extracted from calf brain synaptic vesicles and subjected to paper electrophoresis. It was analyzed further in an automatic amino acid analyzer prior and subsequent to acid hydrolysis. Both alpha- and gamma-forms were found to be present in approximately equal amounts.  相似文献   
163.
The effects of some gangliosides on active uptake of nonmetabolizable alpha-aminoisobutyric acid (AIB) and Na+, K+-ATPase and Ca2+, Mg2+-ATPase activities in superior cervical ganglia (SCG) and nodose ganglia (NG) excised from adult rats were examined during aerobic incubation at 37 degrees C for 2 h. In NG, amino acid uptake was greatly accelerated with the addition of galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylgluc osyl ceramide (GM1) (85%) and also with N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosylglucosyl ceramide (GM2) or [N-acetylneuraminyl]-galactosyl-N-acetylgalactosaminyl-[N-acetyl- neuraminyl]-galactosylglucosyl ceramide (GD1a) (43% each) compared with a nonaddition control at a 5 nM concentration. Under identical conditions, Na+, K+-ATPase activity was strongly stimulated with GM1 (180%) and GD1a (93%), whereas Ca2+, Mg2+-ATPase activity showed no change. In SCG, on the other hand, AIB uptake was apparently inhibited (-27%) by addition of GM1, with a slight decrease in Na+, K+-ATPase but no change in Ca2+, Mg2+-ATPase activity in the tissue. Both asialo-GM1, in which N-acetylneuraminic acid is deficient, and Forssman glycolipid, which is not present in nervous tissue, failed to produce any significant increase in both SCG and NG not only in amino acid uptake, but also in Na+, K+-ATPase activity. A kinetic study of active AIB uptake showed that GM1 ganglioside produced an increase in Km with no change in Vmax in SCG, whereas it caused a decrease in Km with a slight increase in Vmax in NG. Treatment of NG and SCG with neuraminidase from Vibrio cholerae, an enzyme that split off sialic acid from polysialoganglioside, leaving GM1 intact, caused little inhibition of the amino acid uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
164.
A transient 45% increase in cortical high-affinity choline uptake (HACU) was observed after an injection of quinolinic acid (QUIN) into the nucleus basalis magnocellularis (nbM) of the rat. This was followed by a steady decline in choline uptake, which resulted in a 46% decrease by day 7. Specific [3H]hemicholinium-3 binding to coronal brain sections showed a similar pattern following injections of QUIN into the nbM. The increase in cortical HACU elicited by QUIN appeared to be dose dependent.  相似文献   
165.
The presence of gamma-hydroxybutyric acid (GHB) in synaptosome-enriched fractions of rat brain was ascertained using a GLC technique. The stability of GHB in synaptosomes was evaluated by addition of various gamma-aminobutyric acid (GABA) transaminase (GABA-T) inhibitors, GHB, or ethosuximide to the homogenizing medium. Furthermore, changes in whole brain GHB levels were compared with those in the synaptosomal fraction in animals treated with GABA-T inhibitors, GABA, or ethosuximide. GHB was present in synaptosome-enriched fractions in concentrations ranging from 40 to 70 pmol/mg of protein. There was no evidence for redistribution, leakage, or metabolism of GHB during the preparation of synaptosomes. The elevations of whole brain GHB level associated with GABA-T or ethosuximide treatment were reflected by a parallel increase in synaptosomal GHB content. These data add to the growing evidence that GHB may have neurotransmitter or neuromodulator function.  相似文献   
166.
The content of polyunsaturated fatty acids, the activities of superoxide dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase, and the concentration of reduced glutathione were measured in cerebral microvessels isolated from rat brain. Polyunsaturated fatty acids, mainly arachidonic, linoleic, and docosahexaenoic acids, accounted for 32% of total fatty acids in cerebral microvessels. Whereas total SOD activity in the microvessels was slightly lower than that found in cerebrum and cerebellum, glutathione peroxidase and glutathione reductase activities were twice as high and catalase activity was four times higher. Glutathione peroxidase in microvessels is active on both hydrogen peroxide and cumen hydroperoxide, and it is strongly inhibited by mercaptosuccinate. After several hours of preparation, the concentration of reduced glutathione in isolated microvessels was 0.7 mumol/mg of protein, which corresponds to a concentration of approximately 3.5 mM. Our results indicate that the blood-brain barrier contains large amounts of peroxide-detoxifying enzymes, which may act, in vivo, to protect its highly polyunsaturated membranes against oxidative alterations.  相似文献   
167.
Alterations in neostriatal dopamine metabolism, release, and biosynthesis were determined 3, 5, or 18 days following partial, unilateral destruction of the rat nigrostriatal dopamine projection. Concentrations of dopamine and each of its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine (3-MT) were markedly decreased in the lesioned striata at 3, 5, or 18 days postoperation. The decline in striatal high-affinity [3H]dopamine uptake closely matched the depletion of dopamine at 3 and 18 days postoperation. However, neither DOPAC, HVA, nor 3-MT concentrations were decreased to as great an extent as dopamine at any time following lesions that depleted the dopamine innervation of the striatum by greater than 80%. In these more severely lesioned animals, dopamine metabolism, estimated from the ratio of DOPAC or HVA to dopamine, was increased two- to four-fold in the injured hemisphere compared with the intact hemisphere. Dopamine release, estimated by the ratio of 3-MT to dopamine, was more increased, by five- to sixfold. Importantly, the HVA/dopamine, DOPAC/dopamine, and 3-MT/dopamine ratios did not differ between 3 and 18 days postlesioning. The rate of in vivo dopamine biosynthesis, as estimated by striatal DOPA accumulation following 3,4-dihydroxyphenylalanine (DOPA) decarboxylase inhibition with NSD 1015, was increased by 2.6- to 2.7-fold in the surviving dopamine terminals but again equally at 3 and 18 days postoperation. Thus, maximal increases in dopamine metabolism, release, and biosynthesis occur rapidly within neostriatal terminals that survive a lesion. This mobilization of dopaminergic function could contribute to the recovery from the behavioral deficits of partial denervation by increasing the availability of dopamine to neostriatal dopamine receptors. However, these presynaptic compensations are not sufficient to account for the protracted (at least 3-week) time course of sensorimotor recovery that has been observed following partial nigrostriatal lesion.  相似文献   
168.
Methylation of 2-125I-lysergic acid diethylamide (125I-LSD) at the N1 position produces a new derivative, N1-methyl-2-125I-lysergic acid diethylamide (125I-MIL), with improved selectivity and higher affinity for serotonin 5-HT2 receptors. In rat frontal cortex homogenates, specific binding of 125I-MIL represents 80-90% of total binding, and the apparent dissociation constant (KD) for serotonin 5-HT2 receptors is 0.14 nM (using 2 mg of tissue/ml). 125I-MIL also displays a high affinity for serotonin 5-HT1C receptors, with an apparent dissociation constant of 0.41 nM at this site. 125I-MIL exhibits at least 60-fold higher affinity for serotonin 5-HT2 receptors than for other classes of neurotransmitter receptors, with the dopamine D2 receptor as its most potent secondary binding site. Studies of the association and dissociation kinetics of 125I-MIL reveal a strong temperature dependence, with very slow association and dissociation rates at 0 degree C. Autoradiographic experiments confirm the improved specificity of 125I-MIL. Selective labeling of serotonin receptors was observed in all brain areas examined. In vivo binding studies in mice indicate that 125I-MIL is the best serotonin receptor label yet described, with the highest frontal cortex to cerebellum ratio of any serotonergic radioligand. 125I-MIL is a promising ligand for both in vitro and in vivo labeling of serotonin receptors in the mammalian brain.  相似文献   
169.
An enzyme-linked fluorometric assay is described for the continuous monitoring of the unidirectional efflux of glutamate from guinea-pig synaptosomes. Glutamate efflux from freshly suspended, polarized synaptosomes occurs at 0.35-0.39 nmol min-1 mg of protein-1 and is not significantly affected by external Ca2+. KCl depolarization (30 mMKCl) in the absence of Ca2+ doubles this rate, whereas in the presence of Ca2+, the initial kinetics of the assay are consistent with the release in the first 5 s of 0.6 nmol mg of protein-1. The final extent of Ca2+-dependent release amounts to 1.9 nmol mg of protein-1, or 8.5% of the total intrasynaptosomal glutamate content. Preincubation of synaptosomes at 30 degrees C for 2 h before depolarization leads to a decrease in Ca2+-independent release and an increase in Ca2+-dependent release, consistent with an intrasynaptosomal relocation of the amino acid.  相似文献   
170.
The relationship between the stability of potential neurochemical markers and autolysis time was studied at 4 degrees C and 25 degrees C using postmortem brain samples from two rat strains. In general, qualitatively similar results were obtained with either N/Nih or Sprague-Dawley rats; however, quantitative differences were often observed, particularly in regard to benzodiazepine receptor changes. For every enzyme activity or binding property examined, no significant change was found when brains were kept at 4 degrees C for up to 72 h prior to freezing at -70 degrees C. Na,K-ATPase and low-affinity Ca-ATPase activities were also stable in brains kept at 25 degrees C for up to 72 h. Mg-ATPase activity was reduced in brains kept at 25 degrees C for 24 and 48 h. [3H]Guanidinoethylmercaptosuccinic acid [( 3H]GEMSA) binding to enkephalin convertase in the cytosol was not significantly changed in brains kept at 25 degrees C; however, a small increase was seen for [3H]GEMSA binding to the membrane fraction at 24, but not 48 and 72 h postmortem. [3H]Quinuclidinyl benzilate [( 3H]QNB) binding to muscarinic cholinergic receptors decreased in brains kept at 25 degrees C for 72 h. Opioid receptor binding also decreased in brains kept at 25 degrees C. Using [3H]2-D-alanine-5-D-leucine enkephalin to label delta opioid receptors, a statistically significant decrease in binding was observed as early as 6 h postmortem, and was completely abolished after 72 h at 25 degrees C. In contrast, [3H]naloxone binding was unchanged after 24 h at 25 degrees C, but was decreased after 48 and 72 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号