首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3491篇
  免费   307篇
  国内免费   189篇
  3987篇
  2024年   27篇
  2023年   53篇
  2022年   43篇
  2021年   76篇
  2020年   152篇
  2019年   123篇
  2018年   129篇
  2017年   130篇
  2016年   103篇
  2015年   95篇
  2014年   130篇
  2013年   251篇
  2012年   90篇
  2011年   137篇
  2010年   113篇
  2009年   162篇
  2008年   163篇
  2007年   172篇
  2006年   156篇
  2005年   121篇
  2004年   107篇
  2003年   103篇
  2002年   99篇
  2001年   68篇
  2000年   59篇
  1999年   64篇
  1998年   62篇
  1997年   60篇
  1996年   63篇
  1995年   70篇
  1994年   74篇
  1993年   48篇
  1992年   70篇
  1991年   50篇
  1990年   66篇
  1989年   45篇
  1988年   52篇
  1987年   44篇
  1986年   34篇
  1985年   44篇
  1984年   52篇
  1983年   26篇
  1982年   38篇
  1981年   48篇
  1980年   32篇
  1979年   31篇
  1978年   12篇
  1977年   10篇
  1976年   14篇
  1974年   8篇
排序方式: 共有3987条查询结果,搜索用时 15 毫秒
91.
Nitrite reductase (ferredoxin:nitrite oxidoreductase, EC 1.6.6.1) carries out the six-electron reduction of nitrite to ammonium ions in the chloroplasts/plastids of higher plants. The complete or partial nucleotide sequences of a number of nitrite reductase apoprotein genes or cDNAs have been determined. Deduced amino acid sequence comparisons have identified conserved regions, one of which probably is involved in binding the sirohaem/4Fe4S centre and another in binding the electron donor, reduced ferredoxin. The nitrite reductase apoprotein is encoded by the nuclear DNA and is synthesised as a precursor carrying an N-terminal extension, the transit peptide, which acts to target the protein to, and within, the chloroplast/plastid. In those plants examined the number of nitrite reductase apoprotein genes per haploid genome ranges from one (barley, spinach) to four ( Nicotiana tabacum ). Mutants defective in the nitrite reductase apoprotein gene have been isolated in barley. During plastidogenesis in etiolated plants, synthesis of nitrite reductase is regulated by nitrate, light (phytochrome), and an uncharacterised 'plastidic factor' produced by functional chloroplasts. In leaves of green, white-light-grown plants up-regulation of nitrite reductase synthesis is achieved via nitrate and light and down-regulation by a nitrogenous end-product of nitrate assimilation, perhaps glutamine. A role for phytochrome has not been demonstrated in green, light-grown plants. Light regulation of nitrite reductase genes is related more closely to that of photosynthetic genes than to the nitrate reductase gene. In roots of green, white-light-grown plants nitrate alone is able to bring about synthesis of nitrite reductase, suggesting that the root may possess a mechanism that compensates for the light requirement seen in the leaf.  相似文献   
92.
The distribution of NO3? reduction between roots and shoots was studied in hydro-ponically-grown peach-tree seedlings (Prunus persica L.) during recovery from N starvation. Uptake, translocation and reduction of NO3?, together with transport through xylem and phloem of the newly reduced N were estimated, using 15N labellings, in intact plants supplied for 90 h with 0.5 mM NH4+ and 0.5, 1.5 or 10 mM NO3?. Xylem transport of NO3? was further investigated by xylem sap analysis in a similar experiment. The roots were the main site of NO3? reduction at all 3 levels of NO3? nutrition. However, the contribution of the shoots to the whole plant NO3? reduction increased with increasing external NO3? availability. This contribution was estimated to be 20, 23 and 42% of the total assimilation at 0.5, 1.5 and 10 mM NO3?, respectively. Both 15N results and xylem sap analysis confirmed that this trend was due to an enhancement of NO3? translocation from roots to shoots. It is proposed that the lack of NO3? export to the shoots at low NO3? uptake rate resulted from a competition between NO3? reduction in the root epidermis/cortex and NO3? diffusion to the stele. On the other hand, net xylem transport of newly reduced N was very efficient since ca 70% of the amino acids synthesized in the roots were translocated to the shoots, regardless of the level of NO3? nutrition. This net xylem transport by far exceeded the net downward phloem transport of the reduced N assimilated in shoots. As a consequence, the reduced N resulting from NO3? assimilation, principally occurring in the roots, was mainly incorporated in the shoots.  相似文献   
93.
94.
在自然环境中,人和动物常在一定的背景噪声下感知信号声刺激,然而,关于低强度的弱背景噪声如何影响听皮层神经元对声刺激频率的编码尚不清楚.本研究以大鼠听皮层神经元的频率反应域为研究对象,测定了阈下背景噪声对79个神经元频率反应域的影响.结果表明,弱背景噪声对大鼠初级听皮层神经元的听反应既有抑制性影响、又有易化性影响.一般来说,抑制性影响使神经元的频率调谐范围和最佳频率反应域缩小,易化性影响使神经元的频率调谐范围和最佳频率反应域增大.对于少数神经元,弱背景噪声并未显著改变其频率调谐范围,但却改变了其最佳频率反应域范围.弱背景噪声对63.64%神经元的特征频率和55.84%神经元的最低阈值无显著影响.神经元频率调谐曲线的尖部比中部更容易受到弱背景噪声的影响.该研究结果有助于我们进一步理解复杂声环境下大脑听皮层对听觉信息的编码机制.  相似文献   
95.
Microbial sulphate reduction at a low pH   总被引:3,自引:0,他引:3  
It is now well established that microbial sulphate-reduction can proceed in environments with a pH<5. This review summarizes existing reports on sulphate reduction at low pH and discusses possible pH effects on sulphate-reducing bacteria. Microbial sulphate reduction has been observed in acidic lakes, wetlands, mesocosms, acidic sulphate soils and bioreactors. Possible inhibitory factors include the metabolites H(2)S and organic acids, which can be toxic depending on pH. Metal sulphide precipitation and competition with other bacteria, namely iron-reducing bacteria, can inhibit sulphate reduction. Theoretical considerations show that normal sulphate reduction rates are too low to maintain a neutral micro niche in an acidic environment. The first acidotolerant sulphate-reducing bacteria have been isolated recently.  相似文献   
96.
Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention. Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates.  相似文献   
97.
Plant volatile organic compounds are a major carbonsource in nature. We studied the degradability ofthese substances by anaerobic microorganisms inenrichment cultures with representative essential oilsas organic substrates and nitrate as electronacceptor. Lemon and pine needle oil supportedmicrobial growth in the presence of pure oil, whereasparsley seed, camphor, sage, fennel, and mint oilsupported growth only when the essential oils weredissolved in an overlying phase of2,2,4,4,6,8,8-heptamethylnonane. Thyme oil did notsupport denitrification. Analyses of the microbiallydegraded oils revealed the disappearance ofmonoterpenes, of several monoterpenoids, and ofmethoxy-propenyl-benzenes, including apiole andmyristicin. Most-probable-number determinations fordenitrifying communities in sewage sludge and forestsoil yielded 106 to 107monoterpene-utilizing cells ml-1, representing0.7 to 100% of the total cultivablenitrate-reducing microorganisms. The utilization ofessential oils together with the common occurrence ofthis metabolic trait are indications for anenvironmentally important, but currently unexploredanaerobic turnover of plant volatile organic compoundsin soil.  相似文献   
98.
We examined inter- and intra-clutch egg-size variation in the bluethroat (Luscinia s. svecica), an open-nesting passerine breeding in the sub-alpine region in southern Norway. By removing first clutches shortly after egg-laying, we induced laying of a repeat clutch. Females significantly reduced the number of eggs from the first to the second nesting attempt, but increased mean egg size. Females in good condition laid significantly larger eggs than those in poor condition. Consistent with predictions of the brood survival hypothesis, assuming an adaptive investment in last eggs to ensure survival of all eggs in the clutch, we found that the size of the last eggs in first clutches was generally larger than the mean egg size of the clutch, and that the relative size of the last egg increased with clutch size. However, a large last egg reflected a general increase in egg size throughout the laying sequence rather than a specific investment in the last egg only. Egg size was not significantly influenced by sex or paternity (within-pair versus extra-pair) of the embryo. In repeat clutches the last egg was not consistently larger than the mean for the clutch. We conclude that female bluethroats face resource limitations during egg formation early in the season, and that the patterns of increase in egg size with laying order for first clutches, and from first to repeat clutches, can largely be explained by proximate constraints on egg formation.  相似文献   
99.
Summary The objectives of this investigation were to determine the effects of oxygen partial pressure (pO2) and combined nitrogen (NH 4 + ) on rates of acetylene reduction (AR) associated with roots of intact corn, sorghum, and pearl millet plants. Soil-grown plants were carefully removed from soil and incubated hydroponically with the root system enclosed in a plastic cylinder; the tops were left exposed to ambient conditions. Oxygen concentrations around the root systems were controlled by sparging the nutrient solution with known quantities of O2 in N2. Ammonium nitrogen was added to the nutrient solution following establishment of AR rates to determine its effect on rates of N2-fixation (AR). Substantial AR rates (0.1–1.5 mol C2H4 g dry wt–1 h–1) were associated with roots exposed to 0–2% O2 (v/v) (0.0–2.02 kPa) in N2 following at 12–24 h period of exposure to the reduced oxygen tension. Root systems exposed to air failed to demonstrate AR while those exposed to 100% N2 showed lower activity than those at reduced pO2 values. Addition of NH 4 + (10–20 g N ml–1 of nutrient solution) reduced AR by 75–90% within 24 h after addition. Oxygen uptake by roots exposed to low pO2 was substantially reduced.  相似文献   
100.
Whole lyophilized cells of an Escherichia coli overexpressing the alcohol dehydrogenase (ADH-'A') from Rhodococcus ruber DSM 44541 were used for the asymmetric reduction of ketones to secondary alcohols. The recycling of the required nicotinamide cofactor (NADH) was achieved in a coupled-substrate process. In the course of the reaction the ketone is reduced to the alcohol and the hydrogen donor 2-propanol is oxidized to acetone by one enzyme. This leads to a thermodynamic equilibrium between all four components determining the maximum achievable conversion. To overcome this limitation an in situ product removal technique (ISPR) for the application with whole cells was developed. In this method the most volatile compound is separated from the reaction vessel by an air flow resulting in a shift of the equilibrium towards the desired secondary alcohol. The so-called stripping process represents a simple and efficient method to overcome the thermodynamic limitation in biocatalytic reactions. Employing this method, the conversion of selected biotransformations was increased up to completeness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号