首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2343篇
  免费   96篇
  国内免费   83篇
  2023年   18篇
  2022年   30篇
  2021年   46篇
  2020年   43篇
  2019年   69篇
  2018年   56篇
  2017年   49篇
  2016年   43篇
  2015年   28篇
  2014年   98篇
  2013年   112篇
  2012年   62篇
  2011年   80篇
  2010年   56篇
  2009年   95篇
  2008年   92篇
  2007年   95篇
  2006年   86篇
  2005年   114篇
  2004年   92篇
  2003年   76篇
  2002年   72篇
  2001年   61篇
  2000年   57篇
  1999年   47篇
  1998年   50篇
  1997年   51篇
  1996年   40篇
  1995年   36篇
  1994年   46篇
  1993年   45篇
  1992年   48篇
  1991年   33篇
  1990年   33篇
  1989年   37篇
  1988年   48篇
  1987年   45篇
  1986年   32篇
  1985年   54篇
  1984年   60篇
  1983年   30篇
  1982年   55篇
  1981年   34篇
  1980年   20篇
  1979年   20篇
  1978年   5篇
  1977年   6篇
  1976年   5篇
  1974年   5篇
  1973年   3篇
排序方式: 共有2522条查询结果,搜索用时 250 毫秒
151.
Microbially induced calcite precipitation (MICP) can reduce the permeability of soil by reducing the pore volumes. A MICP-based soil improvement method to control water leakage in irrigation channels and reservoirs built on sandy soil grounds is presented in this article. Using this method, a low-permeable hard crust can be formed at the soil surfaces. An experimental study was carried out to evaluate the effect of this method. Sandy soil samples were treated using four different schemes, namely, (1) surface spray, (2) surface spray with the addition of fibers, (3) surface spray and bulk stabilization, and (4) immersion stabilization. By applying around 2.6?L treatment liquid (consisting of ureolytic bacteria, 0.5?mol/L calcium chloride and 0.5?mol/L urea) to the top 2-cm thick soil, the seepage rates of the samples treated by the four different schemes could be reduced by up to 379 times. The conversion rates of calcium source in the tests were up to 89.7%. The results showed that a method of treating the soil in bulk before the formation of a crust on top of the soil layer was effective in reducing the seepage rates. After the bio-treatment, the formed low-permeable hard crust layer was 10 to 20?mm thick with a calcite content higher than 5%. Below the hard crusts, the calcite content was less than 5% and the soil was not properly cemented. Using the mercury intrusion test, it was found that both pore volumes and pore sizes of the bio-treated soil reduced significantly as compared with the untreated soil. Penetration tests using a flat-bottom penetrometer were used to assess the mechanical behavior of the bio-treated soil. The results indicated that the penetration resistance of the bio-treated soil layer was much higher than that of the untreated soil.  相似文献   
152.
Antibiotic resistance is a global current threat of increasing importance. Moreover, biofilms represent a medical challenge since the inherent antibiotic resistance of their producers demands the use of high doses of antibiotics over prolonged periods. Frequently, these therapeutic measures fail, contributing to bacterial persistence, therefore demanding the development of novel antimicrobials. Esters of bicyclic amines (EBAs), which are strong inhibitors of Streptococcus pneumoniae growth, were initially designed as inhibitors of pneumococcal choline-binding proteins on the basis of their structural analogy to the choline residues in the cell wall. However, instead of mimicking the characteristic cell chaining phenotype caused by exogenously added choline on planktonic cultures of pneumococcal cells, EBAs showed an unexpected lytic activity. In this work we demonstrate that EBAs display a second, and even more important, function as cell membrane destabilizers. We then assayed the inhibitory and disintegrating activity of these molecules on pneumococcal biofilms. The selected compound (EBA 31) produced the highest effect on S. pneumoniae (encapsulated and non-encapsulated) biofilms at very low concentrations. EBA 31 was also effective on mixed biofilms of non-encapsulated S. pneumoniae plus non-typeable Haemophilus influenzae, two pathogens frequently forming a self-produced biofilm in the human nasopharynx. These results support the role of EBAs as a promising alternative for the development of novel, broad-range antimicrobial drugs encompassing both Gram-positive and Gram-negative pathogens.  相似文献   
153.
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.  相似文献   
154.
Computational studies of the potential biological impact of several energetic compounds were performed. The most commonly used explosives were considered in the present studies: trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 2,4-dinitroanisole (DNAN), and 5-Nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO). The effect of such factors as ionic strength and presence of DMSO in the water solution on the structure of the membrane were considered using the POPC lipid bilayer as an example. Molecular dynamics (MD) simulations revealed that, even on a short-time scale, the influence of those additives is noticeable, and therefore those factors should always be taken into account. The MD and the COSMOmic approaches were used to elucidate the ability of the energetic compounds to penetrate the living cell. Calculated free energy profiles and partitioning coefficients revealed distributions of the compounds in the lipid bilayer as well as an overall ability to enter the cell. MD in this case provides a better representation of the free energy profile, while the COSMOmic approach works better to predict log(Klipw) values. The effect of the functional group was observed for the profiles that were obtained using the MD method.  相似文献   
155.
156.
Necrotizing enterocolitis (NEC) is one of the most widespread and devastating gastrointestinal diseases in neonates. Destruction of the intestinal barrier is the main underlying cause of NEC. The aim of this study was to determine the role of lactadherin in preventing NEC in a neonatal rat model and investigate the molecular mechanism of lactadherin-mediated protection of the intestinal barrier. Neonatal rats were divided into three groups: dam feeding (DF), NEC (NEC), and NEC supplemented with 10 μg/(g·day) recombinant human lactadherin (NEC+L). Intestinal permeability, tissue damage, and cell junction protein expression and localization were evaluated. We found that lactadherin reduced weight loss caused by NEC, reduced the incidence of NEC from 100% to 46.7%, and reduced the mean histological score for tissue damage to 1.40 compared with 2.53 in the NEC group. Intestinal permeability of lactadherin-treated rats was significantly reduced when compared with that of the NEC group. In addition, the expression levels of JAM-A, claudin 3, and E-calcium in the ileum of NEC group animals increased compared with those in the ileum of DF group animals, and these levels decreased in the NEC+L group. Lactadherin changed the localization of claudin 3, occludin, and E-cadherin in epithelial cells. The mechanism underlying lactadherin-mediated protection of the intestinal barrier might be restoring the correct expression levels and localization of tight junction and adherent junction proteins. These findings suggest a new candidate agent for the prevention of NEC in newborns.  相似文献   
157.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
158.
线粒体双层膜的完整性是细胞存活的关键因素,其遭到破坏后会使细胞发生凋亡、焦亡或炎症。线粒体膜的破坏包括线粒体外膜通透、线粒体内膜通透、通透性转换,三者可通过调控不同的信号通路导致不同的细胞命运。然而,这些信号通路之间存在交叉关联,使得线粒体膜对细胞命运的调控错综复杂,导致人们对其机制缺乏清晰的认识。本综述首先分析了不同程度线粒体外膜通透在细胞存活、癌变或凋亡中的作用,接着讨论了线粒体内膜通透通过引发线粒体DNA释放促进炎症发生的分子机制,然后阐述了线粒体通透性转换引发焦亡的作用机制,最后总结出线粒体膜完整性影响细胞命运决策的内在关联。深入了解线粒体膜完整性调控细胞命运的分子动力学机制,有助于为癌症和神经退行性疾病的诊疗提供思路。  相似文献   
159.
The use of cryosurgery in the treatment of uterine fibroids is emerging as a possible treatment modality. The two known mechanisms of direct cell injury during the tissue freezing process are linked to intracellular ice formation and cellular dehydration. These processes have not been quantified within uterine fibroid tumor tissue. This study reports the use of a combination of freeze-substitution microscopy and differential scanning calorimetry (DSC) to quantify freeze-induced dehydration within uterine fibroid tumor tissue. Stereological analysis of histological tumor sections was used to obtain the initial cellular volume (V(o)) or the Krogh model dimensions (deltaX, the distance between the microvascular channels = 15.5 microm, r(vo), the initial radius of the extracellular space = 4.8 micro m, and L, the axial length of the Krogh cylinder = 19.1 microm), the interstitial volume ( approximately 23%), and the vascular volume ( approximately 7%) of the fibroid tumor tissue. A Boyle-van't Hoff plot was then constructed by examining freeze-substituted micrographs of "equilibrium"-cooled tissue slices to obtain the osmotically inactive cell volume, V(b) = 0.47V(o). The high interstitial volume precludes the use of freeze-substitution microscopy data to quantify freeze-induced dehydration. Therefore, a DSC technique, which does not suffer from this artifact, was used to obtain the water transport data. A model of water transport was fit to the calorimetric data at 5 and 20 degrees C/min to obtain the "combined best fit" membrane permeability parameters of the embedded fibroid tumor cells, assuming either a Krogh cylinder geometry, L(pg) = 0.92 x 10(-13) m(3)/Ns (0.55 microm/min atm) and E(Lp) = 129.3 kJ/mol (30.9 kcal/mol), or a spherical cell geometry (cell diameter = 18.3 microm), L(pg) = 0.45 x 10(-13) m(3)/Ns (0.27 microm/min atm) and E(Lp) = 110.5 kJ/mol (26.4 kcal/mol). In addition, numerical simulations were performed to generate conservative estimates, in the absence of ice nucleation between -5 and -30 degrees C, of intracellular ice volume in the tumor tissue at various cooling rates typical of those experienced during cryosurgery (< or =100 degrees C/min). With this assumption, the Krogh model simulations showed that the fibroid tumor tissue cells cooled at rates < or = 50 degrees C/min are essentially dehydrated; however, at rates >50 degrees C/min the amount of water trapped within the tissue cells increases rapidly with increasing cooling rate, suggesting the formation of intracellular ice.  相似文献   
160.
To understand how plasma membranes may limit water flux, we have modeled the apical membrane of MDCK type 1 cells. Previous experiments demonstrated that liposomes designed to mimic the inner and outer leaflet of this membrane exhibited 18-fold lower water permeation for outer leaflet lipids than inner leaflet lipids (Hill, W.G., and M.L. Zeidel. 2000. J. Biol. Chem. 275:30176-30185), confirming that the outer leaflet is the primary barrier to permeation. If leaflets in a bilayer resist permeation independently, the following equation estimates single leaflet permeabilities: 1/P(AB) = 1/P(A) + 1/P(B) (Eq. l), where P(AB) is the permeability of a bilayer composed of leaflets A and B, P(A) is the permeability of leaflet A, and P(B) is the permeability of leaflet B. Using for the MDCK leaflet-specific liposomes gives an estimated value for the osmotic water permeability (P(f)) of 4.6 x 10(-4) cm/s (at 25 degrees C) that correlated well with experimentally measured values in intact cells. We have now constructed both symmetric and asymmetric planar lipid bilayers that model the MDCK apical membrane. Water permeability across these bilayers was monitored in the immediate membrane vicinity using a Na+-sensitive scanning microelectrode and an osmotic gradient induced by addition of urea. The near-membrane concentration distribution of solute was used to calculate the velocity of water flow (Pohl, P., S.M. Saparov, and Y.N. Antonenko. 1997. Biophys. J. 72:1711-1718). At 36 degrees C, P(f) was 3.44 +/- 0.35 x 10(-3) cm/s for symmetrical inner leaflet membranes and 3.40 +/- 0.34 x 10(-4) cm/s for symmetrical exofacial membranes. From, the estimated permeability of an asymmetric membrane is 6.2 x 10(-4) cm/s. Water permeability measured for the asymmetric planar bilayer was 6.7 +/- 0.7 x 10(-4) cm/s, which is within 10% of the calculated value. Direct experimental measurement of P(f) for an asymmetric planar membrane confirms that leaflets in a bilayer offer independent and additive resistances to water permeation and validates the use of.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号