首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6918篇
  免费   495篇
  国内免费   889篇
  8302篇
  2024年   14篇
  2023年   101篇
  2022年   131篇
  2021年   204篇
  2020年   179篇
  2019年   201篇
  2018年   218篇
  2017年   185篇
  2016年   192篇
  2015年   213篇
  2014年   266篇
  2013年   420篇
  2012年   230篇
  2011年   242篇
  2010年   210篇
  2009年   261篇
  2008年   286篇
  2007年   329篇
  2006年   346篇
  2005年   321篇
  2004年   244篇
  2003年   346篇
  2002年   272篇
  2001年   225篇
  2000年   202篇
  1999年   214篇
  1998年   170篇
  1997年   192篇
  1996年   184篇
  1995年   162篇
  1994年   182篇
  1993年   188篇
  1992年   140篇
  1991年   139篇
  1990年   129篇
  1989年   125篇
  1988年   118篇
  1987年   100篇
  1986年   67篇
  1985年   71篇
  1984年   56篇
  1983年   33篇
  1982年   48篇
  1981年   33篇
  1980年   31篇
  1979年   18篇
  1978年   12篇
  1977年   11篇
  1976年   13篇
  1973年   8篇
排序方式: 共有8302条查询结果,搜索用时 9 毫秒
71.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   
72.
Van de Geijn  S. C.  Vos  J.  Groenwold  J.  Goudriaan  J.  Leffelaar  P. A. 《Plant and Soil》1994,161(2):275-287
A research facility is described for the integrated study of soil-root-shoot-atmosphere relationships in crops. The Wageningen Rhizolab has been in use since 1990, and consists of two rows, each with eight below-ground compartments aligned along a corridor. A rain shelter automatically covers the experimental area at the start of rainfall. Compartments are 125 cm × 125 cm and 200 cm deep. Each compartment has a separate drip irrigation system. Crop canopy photosynthesis, respiration, and transpiration can be measured simultaneously and continuously on four out of eight compartments at a time. Each compartment can be filled with a selected soil material (repacked soil) and is accessible from the corridor over its full depth. Multiple sensors for measuring soil moisture status, electrical conductivity, temperature, soil respiration, trace gases and oxygen are installed in spatial patterns in accordance with the requirements of the experiments. Sensors are connected to control and data-acquisition devices. Likewise, provisions have been made to sample manually the soil solution and soil atmosphere. Root observation tubes (minirhizotrons) are installed horizontally at depth intervals ranging from 5 cm (upper soil layers) to 25 cm (below 1 m). The facility is at present in use to study growth and development of vegetation (crops) in relation to drought, nutrient status, soil-borne diseases, and underground root competition. One important application is the study of elevated CO2 concentration and climate change and the way they affect crops and their carbon economy. Growth and development of field grown vegetables and winter cover crops are also evaluated. The common aspect of those studies is to gain a better understanding of crop growth under varying environmental conditions, and to collect datasets that may help to improve mechanistic crop growth simulation models that can address suboptimal growth conditions.  相似文献   
73.
For measuring the length of root samples, the use of a three-dimensional (3D) scanner is proposed to address the problem of a too low resolution. The scanner's high resolution (up to 354 pixels per cm) enables in the resulting grey-value image very thin roots (diameter 100 m) to be segmented from the background by a simple thresholding operation. After skeletonizing, total length of the roots is calculated by multiplying the number of skeleton pixels by a correction factor. A comparison with the modified Newman Line-Intersect Method showed a correlation of r=0.98. Besides its superior resolution, an advantage of this type of scanner is its focusing depth, which allows root samples to be recorded on the scanbed similarly to a camera-oriented system.  相似文献   
74.
The role of proteinaceous amino acids in rhizosphere nutrient mobilization was assessed both experimentally and theoretically. The degree of adsorption onto the soil's solid phase was dependent on both the amino acid species and on soil properties. On addition of amino acids to both soil and freshly precipitated Fe(OH)3, no detectable mobilization of nutrients (K, Na, Ca, Mg, Cu, Mn, Zn, Fe, S, P, Si and Al) was observed, indicating a very low complexation ability of the acidic, neutral and basic amino acids. This was supported by results from a solution equilibria computer model which also predicted low levels of amino acid complexation with solutes present in the soil solution. On comparison with the Fe(OH)3 and equilibria data obtained for the organic acid, citrate, it was concluded that amino acids released into the rhizosphere have a limited role in the direct acquisition of nutrients by plants. The effectiveness of root exudates such as amino acids, phytosiderophores and organic acids in nutrient mobilization from the rhizosphere is discussed with reference to rhizosphere diffusion distances, microbial degradation, rate of complexation and the root's capacity to recapture exudate-metal complexes from the soil.  相似文献   
75.
Cells in the root meristem are organised in longitudinal files. Repeated transverse cell divisions in these files are the prime cause of root growth. Because of the orientation of the cell divisions, we expected to find mitoses with an spindle axis parallel to the file axis. However, we observed in the root cortex ofVicia faba large number of oblique chromosome orientations. From metaphase to telophase there was a dramatic increase of the rotation of the spindle axis. Measurements of both the size of the cortex cells and the chromosome configurations indicated that most cells were too small for an orientation of the spindle parallel to the file axis. Space limitation force the spindle into an oblique position. Despite this spindle axis rotation, most daughter cells remained within the original cell file. Only in extremely flat cells did the position of the daughter nuclei forced the cell to set a plane of division parallel to the file axis, which result in side-by-side orientation of the daughter cells. Telophase spindle axis rotations are also observed inCrepis capillaris andPetunia hybrida.. These species have respectively medium and small sized chromosomes compared toVicia. Since space limitation, which causes the rotation, depends both on cell and chromosome size, the frequency and extent of the phenomenon in former two species is comparatively low.  相似文献   
76.
The Casparian strip, which is specific to roots, was studied in the epicotyls of dark-grown seedlings of pea (Pisum sativum L.) where it was found to have the same morphology and properties as the strip in roots. In dark-grown seedlings, the distance between the upper-most position of the Casparian strip and the bending point of the hook (about 37 mm) did not change during growth of the seedlings. In the uppermost 0.5-mm region of the region in which the Casparian strip could be detected by fluorescence microscopy, the plasma membrane was not firmly attached to the cell wall. The development of the Casparian strip continued for about 42 h after dark-grown seedlings were transferred to the light, indicating that (i) the cells that have been determined to form the Casparian strip in darkness form the strip in the light, and that (ii) it takes about 42 h for the cells to complete formation of the strip. Cells in the hook of dark-grown seedlings did not form a Casparian strip when such seedlings were transferred to the light. The Casparian strip was formed in rapidly elongating internodes of light-grown seedlings when the seedlings were transferred to darkness. Light did not control the formation of the Casparian strip in roots.Abbreviation PBS phosphate-buffered saline  相似文献   
77.
78.
The object of our study is: a model for root growth through a free-boundary problem and the effects resulting from differences in nutrient availability and transport of only one mobile nutrient between the root surface and the rhizosphere produced by an absorption Michaelis-Menten for low and high concentrations. The model equations are solved by two methods: the quasi-stationary method and the balance integral method. The numerical solutions are used to compute radial root growth. Curves of nutrient concentration at the root-soil interface, curve as a function of root radius as well as curves representing root radius as a function of time are plotted. The parameters which are varied are the root absorption power, flux velocity at the root surface, efflux, rhizosphere radius, diffusion coefficient, buffer power, and maximum influx. The two methods show the theoretical results for radial root growth in the range of low and high concentrations. The balance integral method provides more detailed information.  相似文献   
79.
The severity of a root rot disease of cereals, caused by Rhizoctonia solani Kühn AG8, was inversely correlated to the Zn status of plants in field studies in 1989 and 1990. In 1989, a preliminary survey was conducted in a farmer's field in South Australia where Zn deficiency and disease were both widespread. Zn concentration in Spear wheat plants at the 3-leaf to early tillering stage was negatively correlated with severity of the disease. For the elevent elements analysed, a correlation matrix showed that Zn had the highest, and only significant (R2=0.52**) association with disease. The effect of Zn applications and their residual value on disease severity was further studied in a long-term field experiment in 1989 and 1990 to which Zn had been applied in 1986. There was a decrease in the area of Rhizoctonia bare patch as Zn rate was increased, a result consistent with the field survey results; the recommended rate of 2.5 kg Zn ha–1 reduced the area affected by bare patch from 42% to 21% of the total crop area compared with no Zn application, overcame Zn deficiency and increased grain yield from 1.1 to 2.8 t ha–1. In 1990, fresh Zn application treatments were applied to trial plots designed for this purpose, in order to compare the response with the older Zn treatments applied in 1986. The areas of bare patch in the older Zn treatments were approximately 5% greater than those in the fresh Zn treatments. The results are consistent with the hypothesis that Zn deficient plants are more susceptible to root rot caused by R. solani. Testing this hypothesis is the subject of a companion paper.  相似文献   
80.
This experiment was designed to examine the effects of aluminium (Al) on the growth of Pinus radiata (D. Don) and Eucalyptus mannifera subsp. mannifera (Mudie) seedlings in culture solutions in a glasshouse to help explain the failure of radiata pine trees on some acid, low fertility soils in Australia on which the native eucalypts flourish. Aluminium (Al) in culture solution increased the growth of roots and shoots of seedlings of both species but while growth of the eucalypt continued to increase with increases in Al to 2.222 μM, growth of the pine was largest at 370 μM Al. In addition to total root length, specific root length (length per unit dry weight), a measure of fineness of the root, increased in the eucalypt seedlings as the substrate Al increased. Growth of the shoots and roots of the pine in the absence of any added Al was extremely poor suggesting that Al, in low concentrations, may be an essential element or ameliorate some other factors in solution culture at low pH. Root and shoot concentrations of K increased with increasing Al, whilst Ca and Mg Concentrations decreased and Mn concentrations were unaffected in both species. Tissue Ca and Mg concentrations were 2 to 3 times higher in the eucalypt seedlings than the pine at all levels of added Al due to greater uptake of these elements by the eucalypt. In contrast, at the highest concentration of Al in the medium, shoot Al concentrations were lower in the cucalypt than in the pine due to a greater proportion of Al being retained in the eucalypt roots. These differences between the seedlings in terms of root growth and tissue cation concentrations may help explain the ability of eucalypt species to maintain vigorous growth on acid soils high in Al and low in Ca and P, where growth of the pines failed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号