首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1059篇
  免费   110篇
  国内免费   165篇
  2023年   12篇
  2022年   7篇
  2021年   18篇
  2020年   26篇
  2019年   27篇
  2018年   31篇
  2017年   34篇
  2016年   37篇
  2015年   46篇
  2014年   27篇
  2013年   41篇
  2012年   36篇
  2011年   38篇
  2010年   26篇
  2009年   58篇
  2008年   47篇
  2007年   84篇
  2006年   49篇
  2005年   49篇
  2004年   59篇
  2003年   65篇
  2002年   55篇
  2001年   39篇
  2000年   29篇
  1999年   45篇
  1998年   32篇
  1997年   38篇
  1996年   37篇
  1995年   20篇
  1994年   17篇
  1993年   21篇
  1992年   14篇
  1991年   19篇
  1990年   15篇
  1989年   21篇
  1988年   19篇
  1987年   11篇
  1986年   24篇
  1985年   15篇
  1984年   11篇
  1983年   9篇
  1982年   3篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1977年   2篇
  1974年   2篇
  1973年   1篇
  1958年   2篇
排序方式: 共有1334条查询结果,搜索用时 156 毫秒
41.
In the two collembolan species Orchesella cincta and Tomocerus minor the water content, haemolymph osmotic pressure and transpiration rate fluctuate with the feeding rhythm during each instar. The changes in water content, however, are due to changes in dry weight, because the absolute water weight stays constant during the instar.The intake of food is probably the cause of the increase in haemolymph osmotic pressure. Increase of osmotically active substances in the blood and/or blood volume reduction may be responsible for the rise in osmotic pressure. This change in osmotic pressure in turn may affect the responsiveness of the animals to water as well as their feeding behaviour.Changes in the epicuticle and in epidermal cell membranes may cause changes in the rate of transpiration. The high rate observed during ecdysis and during the mid-instar may explain the behaviour of the animals in varied water conditions.Dehydration during the instar causes an equivalent rise in osmotic pressure for both Tomocerus minor and Orchesella cincta. The water loss appears to involve the haemolymph. The physiological state of the animal does not influence the rise in osmotic pressure. There are no signs of any osmoregulation in the two species.  相似文献   
42.
40 aromatic and chlorocyclohexenic structural analogues of abscisic acid were synthesized stereospecifically, and inhibition of transpiration was investigated following two experimental procedures (cut barley leaves and water stressed cotton plants). Structure-activity relationships are discussed. – Two chlorosubstituted cyclohexenic compounds are the most active; their inhibition of transpiration can be compared to that of abscisic acid.  相似文献   
43.
Seedlings of eleven varieties of barley (Hordeum vulgare L.) showed differences in utilization of K+ from a full nutrient solution containing 3.0 mM K+. The K+ content of both roots and shoots was proportional to the fresh weights and dry weights after a week in the nutrient solution. The K+ use-efficiency ratio, which indicates the efficiency of nutrient utilization (mg dry weight produced per mg K+ absorbed), differed significantly among the varieties. There was no correlation between influx of Rb+ and the content of K+. It is suggested that there are wide varietal differences in such genetically-determined properties as ion influx and efflux and net ion transport to the shoot. Further-more, the influx of Rb+ was closely linked to transpiration, probably due to a variety-specific non-metabolic part of Rb+ influx. Varietal differences in influx of Rb+ were more pronounced in high-K+ roots than in low-K+ roots with maximum rate of Rb+ uptake, but the rank of varieties was the same in each case. – Criteria for the selection of K+ use-efficient varieties of barley are discussed.  相似文献   
44.
The adaptive significance of amphistomatic leaves   总被引:19,自引:2,他引:17  
Abstract A clear correlation between the presence of stomata on both surfaces and factors such as habitat, growth form, and physiology has yet to emerge in the literature. However, certain loose trends with these factors are evident, and these are reviewed along with evidence for hypostomaty as the primitive form. It is proposed that the effect of developing stomata on the upper surface as well as the lower is to increase maximum leaf conductance to CO2. Plants with a high photosynthetic capacity, living in full-sun environments, and experiencing rapidly fluctuating or continuously available soil water (as opposed to seasonal or long-term soil water depletion), are identified as deriving an adaptive advantage from a high maximum leaf conductance. The correlation between groups of plants fitting the above conditions and those noted to be amphistomatic is remarkable. Plants not fitting the conditions are found to be largely hypostomatic.  相似文献   
45.
Foliar nyctinasty is a plant behaviour characterised by a pronounced daily oscillation in leaf orientation. During the day, the blades of nyctinastic plant leaves (or leaflets) assume a more or less horizontal position that optimises their ability to capture sunlight for photosynthesis. At night, the positions that the leaf blades assume, regardless of whether they arise by rising, falling or twisting, are essentially vertical. Among the ideas put forth to explain the raison d'être of foliar nyctinasty are that it: (i) improves the temperature relations of plants; (ii) helps remove surface water from foliage; (iii) prevents the disruption of photoperiodism by moonlight; and (iv) directly discourages insect herbivory. After discussing these previous hypotheses, a novel tritrophic hypothesis is introduced that proposes that foliar nyctinasty constitutes an indirect plant defence against nocturnal herbivores. It is suggested that the reduction in physical clutter that follows from nocturnal leaf closure may increase the foraging success of many types of animals that prey upon or parasitise herbivores. Predators and parasitoids generally use some combination of visual, auditory or olfactory cues to detect prey. In terrestrial environments, it is hypothesised that the vertical orientation of the blades of nyctinastic plants at night would be especially beneficial to flying nocturnal predators (e.g. bats and owls) and parasitoids whose modus operandi is death from above. The movements of prey beneath a plant with vertically oriented foliage would be visually more obvious to gleaning or swooping predators under nocturnal or crepuscular conditions. Such predators could also detect sounds made by prey better without baffling layers of foliage overhead to damp and disperse the signal. Moreover, any volatiles released by the prey would diffuse more directly to the awaiting olfactory apparatus of the predators or parasitoids. In addition to facilitating the demise of herbivores by carnivores and parasitoids, foliar nyctinasty, much like the enhanced illumination of the full moon, may mitigate feeding by nocturnal herbivores by altering their foraging behaviour. Foliar nyctinasty could also provide a competitive advantage by encouraging herbivores, seeking more cover, to forage on or around non‐nyctinastic species. As an added advantage, foliar nyctinasty, by decreasing the temperature between plants through its effects on re‐radiation, may slow certain types of ectothermic herbivores making them more vulnerable to predation. Foliar nyctinasty also may not solely be a behavioural adaptation against folivores; by discouraging foraging by granivores, the inclusive fitness of nyctinastic plants may be increased.  相似文献   
46.
Abstract. Long-term effects of transpiration on growth and on long-distance ion transport were investigated in maize over a whole growth cycle. Maize plants were grown with nutrients supplied at adequate levels in hydroculture or in soil at 50–60% and at >95% relative humidity. Although the amount of water lost by the plants under these conditions differed by a factor 2 to 3, there was neither a decrease in growth (fresh weight and dry weight) nor in ash content of the 'humid'plants. This was also found when the upper part of the shoot (70–150 cm) was tested separately. It is suggested that transpiration is not essential for long-distance transport of mineral elements in plants. Alternatives are discussed.  相似文献   
47.
Soybeans were grown at three CO2 concentrations in outdoor growth chambers and at two concentrations in controlled-environment growth chambers to investigate the interactive effects of CO2, temperature and leaf-to-air vapour pressure difference (LAVPD) on stomatal conductance. The decline in stomatal conductance with CO2 was a function of both leaf temperature and LAVPD. In the field measurements, stomatal conductance was more sensitive to LAVPD at low CO2 at 30 °C but not at 35 °C. There was also a direct increase in conductance with temperature, which was greater at the two elevated carbon dioxide concentrations. Environmental growth chamber results showed that the relative stomatal sensitivity to LAVPD decreased with both leaf temperature and CO2. Measurements in the environmental growth chamber were also performed at the opposing CO2, and these experiments indicate that the stomatal sensitivity to LAVPD was determined more by growth CO2 than by measurement CO2. Two models that describe stomatal responses to LAVPD were compared with the outdoor data to evaluate whether these models described adequately the interactive effects of CO2, LAVPD and temperature.  相似文献   
48.
A chlorophyll deficient mutant of Hordeum vulgare L. was investigated with respect to its transpiration response to light pulses. Broad band blue light. 380–500 nm, caused a significant transpiration response, while broad band red light did not. The transpiration response to changes in the ambient CO2-concentration was the same in the chlorophyll deficient mutant as in green plants. The absence of a transpiration response to red light in the mutant was therefore not the result of a defective CO2-response. It is concluded that the specific blue light response is not mediated via photosynthetic CO2-fixation. The nature of the blue light response is discussed.  相似文献   
49.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   
50.
中国西北地区通过大量种植中间锦鸡儿(Caragana liouana)进行生态治理, 在荒漠草原带上形成人工灌丛景观, 改变了生态系统的结构和功能, 影响到地-气水汽循环过程, 研究该人工灌丛群落的蒸散特征, 对揭示其生态水文效应和指导地方生态治理实践具有重要意义。该文以宁夏盐池荒漠草原带上的人工灌丛群落为例, 利用茎流-蒸渗仪法测定了2018年5-8月的灌木蒸腾和丛下蒸散, 并分析了环境因子对人工灌丛群落蒸散的影响。结果表明: (1)茎流-蒸渗仪法所测的群落蒸散与水量平衡法、涡度相关法得到的群落蒸散有较好的一致性, 茎流-蒸渗仪法能适用于荒漠草原带人工灌丛群落蒸散及其组分结构的测定; (2)观测期内晴天的灌木蒸腾速率和丛下蒸散速率日变化趋势相近, 均为单峰曲线, 群落蒸散主要发生在日间, 但灌丛最大蒸腾速率的出现时间比丛下蒸散最大速率的出现时间晚1 h; (3) 5-8月间灌木累积蒸腾为83.6 mm, 日平均蒸腾量为0.7 mm·d-1, 季节变化呈抛物线状; 同期丛下累积蒸散为182.5 mm, 日平均蒸散量为1.5 mm·d-1; 丛下蒸散明显大于灌木蒸腾; (4)观测期间人工灌丛群落累积蒸散266.1 mm, 而同期的降水量为222.6 mm, 陆面水分收支处于亏缺状态; (5)净辐射是影响蒸散最主要、最直接的驱动因素, 且能够影响其他因子进而对人工灌丛群落蒸散产生作用。综上, 人工灌丛引发荒漠草原地带陆面水分收支亏缺的现象, 在生态恢复与重建中须引起注意。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号