首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1676篇
  免费   319篇
  国内免费   50篇
  2024年   15篇
  2023年   44篇
  2022年   32篇
  2021年   19篇
  2020年   77篇
  2019年   89篇
  2018年   141篇
  2017年   83篇
  2016年   107篇
  2015年   78篇
  2014年   121篇
  2013年   136篇
  2012年   45篇
  2011年   82篇
  2010年   105篇
  2009年   129篇
  2008年   134篇
  2007年   137篇
  2006年   108篇
  2005年   48篇
  2004年   37篇
  2003年   30篇
  2002年   25篇
  2001年   17篇
  2000年   15篇
  1999年   16篇
  1998年   15篇
  1997年   16篇
  1996年   12篇
  1995年   14篇
  1994年   14篇
  1993年   13篇
  1992年   16篇
  1991年   15篇
  1990年   7篇
  1989年   13篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   5篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有2045条查询结果,搜索用时 15 毫秒
61.
Abstract

This paper focuses on the comprehensive conformational analysis of the quercetin molecule with a broad range of the therapeutic and biological actions. All possible conformers of these molecule, corresponding to the local minima on the potential energy hypersurface, have been obtained by the sequential rotation of its five hydroxyl groups and also by the rotation of its (A?+?C) and B rings relatively each other. Altogether, it was established 48 stable conformers, among which 24 conformers possess planar structure and 24 conformers – nonplanar structure. Their structural, symmetrical, energetical and polar characteristics have been investigated in details. Quantum-mechanical calculations indicate that conformers of the quercetin molecule are polar structures with a dipole moment, which varies within the range from 0.35 to 9.87 Debay for different conformers. Relative Gibbs free energies of these conformers are located within the range from 0.0 to 25.3?kcal·mol?1 in vacuum under normal conditions. Impact of the continuum with ε?=?4 leads to the decreasing of the Gibbs free energies (–0.19–18.15?kcal·mol?1) and increasing of the dipole moment (0.57–12.48?D). It was shown that conformers of the quercetin molecule differ from each other by the intramolecular specific contacts (two or three), stabilizing all possible conformers of the molecule – H-bonds (both classical ОН…О and so-called unusual С′Н…О and ОН…С′) and attractive van-der-Waals contacts О…О. Obtained conformational analysis for the quercetin molecule enables to provide deeper understanding of the ‘structure-function’ relationship and also to suggest its mechanisms of the therapeutic and biological actions.

Communicated by Ramaswamy H. Sarma  相似文献   
62.
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) – a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the ‘basis-dependent’ nature of these concepts. We introduce the notion of ‘formal superposition’ and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular ‘decision-making’ and adaptation. We stress that the interpretation of the notion of ‘formal superposition’ should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., ‘Basis-Dependent Selection’, BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the ‘evolvability mechanism’ loophole are also discussed.  相似文献   
63.
ABSTRACT

Atomic models of graphene/calcium-silicate-hydrate (G/C-S-H) are constructed by embedding perfect or defective graphene in molecular structures of amorphous C-S-H. Molecular dynamics (MD) simulation is utilised to study mechanical properties of the G/C-S-H and the enhancing effect of perfect and defective graphene is compared. The effects of temperature and strain rate on perfect and defective G/C-S-H are also investigated and compared. The results from present simulations show that (i) the defective graphene has better enhancing effect in C-S-H than perfect one and it grows with the increase of defect sizes; (ii) the tensile strength of G/C-S-H decreases with the increase of temperature and the defective G/C-S-H is more susceptible to temperature than the perfect one; (iii) the ultimate strength and the failure strain increase significantly with the increase of strain rate and the effects of strain rate on perfect and defective G/C-S-H are similar. These findings provide important atomic insights for understanding the mechanical behaviours of G/C-S-H composite.  相似文献   
64.
Functionalized carbon nanotubes (CNTs) constitute a new class of nanostructured materials that have vast applications in CNT purification and separation, biosensing, drug delivery, etc. Hybrids formed from the functionalization of CNT with biological molecules have shown interesting properties and have attracted great attention in recent years. Of particular interest is the hybridization of single- or double-stranded nucleic acid (NA) with CNT. Nucleobases, as the building blocks of NA, interact with CNT and contribute strongly to the stability of the NA–CNT hybrids and their properties. In this work, we present a thorough review of previous studies on the binding of nucleobases with graphene and CNT, with a focus on the simulation works that attempted to evaluate the structure and strength of binding. Discrepancies among these works are identified, and factors that might contribute to such discrepancies are discussed.  相似文献   
65.
Abstract

Surface hopping (SH) and density matrix evolution (DME) methods which simulate the dynamics of quantum systems embedded in a classical environments are compared with exact quantum-dynamical calculations. These methods are applied to study the inelastic collisions of a classical particle with a five-level quantum harmonic oscillator. One-dimensional, two-state models representing electronic transitions are also treated. In addition, the methods are applied to the dynamics of a proton in a bistable potential bilinearly coupled to the bath of classical harmonic oscillators. Vibrational spectra calculated by both methods compare well with each other. The SH results are, in general, closer to the results of a full quantum treatment than the corresponding DME values. The DME method breaks down in the case of extended coupling with reflection at low energies.  相似文献   
66.
67.
It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues.  相似文献   
68.
69.
Protein splicing is an autocatalytic process where an “intein” self‐cleaves from a precursor and ligates the flanking N‐ and C‐“extein” polypeptides. Inteins occur in all domains of life and have myriad uses in biotechnology. Although the reaction steps of protein splicing are known, mechanistic details remain incomplete, particularly the initial peptide rearrangement at the N‐terminal extein/intein junction. Recently, we proposed that this transformation, an N‐S acyl shift, is accelerated by a localized conformational strain, between the intein's catalytic cysteine (Cys1) and the neighboring glycine (Gly‐1) in the N‐extein. That proposal was based on the crystal structure of a catalytically competent trapped precursor. Here, we define the structural origins and mechanistic relevance of the conformational strain using a combination of quantum mechanical simulations, mutational analysis, and X‐ray crystallography. Our results implicate a conserved, but largely unstudied, threonine residue of the Ssp DnaE intein (Thr69) as the mediator of conformational strain through hydrogen bonding. Further, the strain imposed by this residue is shown to position the splice junction in a manner that enhances the rate of the N‐S acyl shift substantially. Taken together, our results not only provide fundamental understanding of the control of the first step of protein splicing but also have important implications in various biotechnological applications that require precursor manipulation.  相似文献   
70.
The extracellular products of Anabaena cylindrica Lemm. comprise a large variety of compounds including peptides, brownish pigments and substances fluorescing white and blue in ultraviolet light. A number were separated or isolated using techniques of gel filtration, ion exchange and paper chromatography. Serine and threonine comprised over 90% of the amino acids in a group of complex pigmented and fluorescent compounds. One of these accounted for a large proportion of the peptide and pigment present. It contained a large pigment moiety of molecular weight > 5 000 which formed a firm complex with more than 10% of the iron supplied in the culture medium. The anti-polymyxin activity described by Whitton was not associated with any of the major pigments or peptides present.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号