首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8618篇
  免费   893篇
  国内免费   2127篇
  2024年   47篇
  2023年   197篇
  2022年   213篇
  2021年   281篇
  2020年   354篇
  2019年   347篇
  2018年   357篇
  2017年   354篇
  2016年   391篇
  2015年   377篇
  2014年   357篇
  2013年   501篇
  2012年   367篇
  2011年   403篇
  2010年   315篇
  2009年   383篇
  2008年   408篇
  2007年   442篇
  2006年   437篇
  2005年   430篇
  2004年   314篇
  2003年   361篇
  2002年   326篇
  2001年   303篇
  2000年   237篇
  1999年   260篇
  1998年   232篇
  1997年   208篇
  1996年   228篇
  1995年   213篇
  1994年   198篇
  1993年   214篇
  1992年   202篇
  1991年   168篇
  1990年   167篇
  1989年   177篇
  1988年   167篇
  1987年   114篇
  1986年   97篇
  1985年   98篇
  1984年   89篇
  1983年   45篇
  1982年   62篇
  1981年   42篇
  1980年   38篇
  1979年   24篇
  1978年   27篇
  1977年   12篇
  1976年   14篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 281 毫秒
991.
The demand for biofuels has created a market for feedstocks to meet future energy requirements. Temperate × tropical maize (Zea mays L.) hybrids, which combine high biomass and fermentable stalk sugars, have yet to be considered as a biomass feedstock. Our objective was to evaluate biological potential, genetic variability and impact of nitrogen (N) on biomass, stalk sugar, and biofuel potential of temperate × tropical maize (TTM) hybrids. Twelve TTM hybrids, two grain and silage hybrids were grown in 2008, followed in 2009 by seven earshoot‐bagged TTM hybrids. In both years, they were grown with and without supplemental N (202 kg ha?1) in Champaign, IL. Plants were sampled for total and partitioned biomass, and analyzed for concentration and content of sugar. The TTM hybrids were 40% taller, exhibited later reproductive maturity, greater flowering asynchrony, and remained green longer. All hybrids responded to supplemental N by producing more biomass and grain, a lower percent of biomass partitioned to stalk and leaf, whereas TTM also had a decreased concentration of sugar. Total average biomass yields were 24 Mg ha?1 for both the TTM and grain hybrids. However, TTM partitioned 50% more biomass to the stalk and produced 50% more sugar, and had less than half the grain of the commercial hybrids, indicating grain production and sugar accumulation are inversely related. When grain formation was prevented by earshoot bagging, TTM hybrids produced, without supplemental N fertilizer, an average of 4024 kg ha?1 of sugar, which was three‐ to four‐fold greater than the non earshoot‐bagged TTM and ear removed hybrid. Calculated estimates for ethanol production, considering the potential from sugar, stover and grain, indicate TTM can yield nearly the amount of ethanol per hectare as modern grain hybrids, but with a decreased requirement for supplemental fertilizer N.  相似文献   
992.
Biofuels are now an important resource in the United States because of the Energy Independence and Security Act of 2007. Both increased corn growth for ethanol production and perennial dedicated energy crop growth for cellulosic feedstocks are potential sources to meet the rising demand for biofuels. However, these measures may cause adverse environmental consequences that are not yet fully understood. This study 1) evaluates the long‐term impacts of increased frequency of corn in the crop rotation system on water quantity and quality as well as soil fertility in the James River Basin and 2) identifies potential grasslands for cultivating bioenergy crops (e.g. switchgrass), estimating the water quality impacts. We selected the soil and water assessment tool, a physically based multidisciplinary model, as the modeling approach to simulate a series of biofuel production scenarios involving crop rotation and land cover changes. The model simulations with different crop rotation scenarios indicate that decreases in water yield and soil nitrate nitrogen (NO3‐N) concentration along with an increase in NO3‐N load to stream water could justify serious concerns regarding increased corn rotations in this basin. Simulations with land cover change scenarios helped us spatially classify the grasslands in terms of biomass productivity and nitrogen loads, and we further derived the relationship of biomass production targets and the resulting nitrogen loads against switchgrass planting acreages. The suggested economically efficient (planting acreage) and environmentally friendly (water quality) planting locations and acreages can be a valuable guide for cultivating switchgrass in this basin. This information, along with the projected environmental costs (i.e. reduced water yield and increased nitrogen load), can contribute to decision support tools for land managers to seek the sustainability of biofuel development in this region.  相似文献   
993.
In two field experiments in northern Sweden, we investigated if intercropping reed canary grass (RCG; Phalaris arundinacea L.) with nitrogen‐fixing perennial legumes could reduce N‐fertilizer requirements and also if RCG ash or sewage sludge could be used as a supplement for mineral P and K. We compared biomass production, N uptake and N‐fixation of RCG in monoculture and mixtures of RCG with alsike clover (Trifolium hybridum L.), red clover (Trifolium pratense L.), goat's rue (Galega orientalis Lam.) and kura clover (Trifolium ambiguum M. Bieb.). In one experiment, RCG was also undersown in barley (Hordeum vulgare L.). Three fertilization treatments were applied: 100 kg N ha?1, 50 kg N ha?1 and 50 kg N ha?1 + RCG ash/sewage sludge. We used a delayed harvest method: cutting the biomass in late autumn, leaving it on the field during the winter and harvesting in spring. The legume biomass of the mixtures at the inland experimental site was small and did not affect RCG growth negatively. At the coastal site, competition from higher amount of clover biomass affected RCG growth and spring yield negatively. N‐fixation in red clover and alsike clover mixtures in the first production year approximately covered half of recommended N‐fertilization rate. Goat's rue and kura clover did not establish well at the costal site, but at the inland site goat's rue formed a small but vital undergrowth. RCG undersown in barley gave lower yield, both in autumn and spring, than the other treatments. The high N treatment gave a higher spring yield at the inland site than the low N treatments, but there were no differences due to fertilization treatments at the coastal site. For spring harvest, there were no yield benefits of RCG/legume intercropping compared with RCG monoculture. However, intercropping might be more beneficial in a two‐harvest system.  相似文献   
994.
In addition to a remarkable sexual dimorphism of serum and urine proteomes, the rat is exceptional for the wide difference between the serum patterns during an acute phase reaction vs baseline conditions. This feature allows monitoring with high sensitivity onset and progression of any pathological state that involves an inflammatory component as well as assessing the outcome of any therapeutic intervention. Reference maps have been defined for the proteomes of serum, urine, cerebrospinal fluid and bronchoalveolar lavage fluid. For both serum and urine most of the proteomic investigations have dealt with toxicological testing, for BALF with allergic or irritative reactions, whereas with CSF the main aim was the characterization of rat models of neurological disorders. When surveying more than ten years of literature on rat biological fluid proteomics, it is puzzling to see how seldom a consistent analytical plan has been set up for the comparative investigation on two or more types of sample, whether to fully characterize a disease model or to evaluate pharmacological/toxicological effects of a drug. It is also regrettable that in several cases only a negligible part of the results is discussed at length whereas most data are not even made known to the scientific community.  相似文献   
995.
The rhizobia-legume symbiosis requires a coordinated molecular interaction between the symbionts, initiated by seed and root exudation of several compounds, mainly flavonoids, that trigger the expression of nodulation genes in the bacteria. Since the role of flavonoids seems to be broader than the induction of nodulation genes, we aimed at characterizing genistein-induced proteins of Bradyrhizobium japonicum CPAC 15 (= SEMIA 5079), used in commercial soybean inoculants in Brazil, and of two genetically related strains grown in vitro. Whole-cell proteins were extracted both from induced (1 μM genistein) and from non-induced cultures of the three strains, and separated by two-dimensional electrophoresis. Spot profiles were compared between the two conditions and selected spots were excised and identified by mass spectrometry. Forty-seven proteins were significantly induced by genistein, including several hypothetical proteins, the cytoplasmic flagellar component FliG, periplasmic ABC transporters, a protein related to biosynthesis of exopolysaccharides (ExoN), and proteins involved in redox-state maintenance. Noteworthy was the induction of the PhyR-σEcfG regulon, recently demonstrated to be involved in the symbiotic efficiency of, and general stress response in B. japonicum. Our results confirm that the role of flavonoids, such as genistein, can go far beyond the expression of nodulation-related proteins in B. japonicum.  相似文献   
996.
Liquid nitrogen is colorless, odorless, extremely cold (-196 °C) liquid kept under pressure. It is commonly used as a cryogenic fluid for long term storage of biological materials such as blood, cells and tissues (1,2). The cryogenic nature of liquid nitrogen, while ideal for sample preservation, can cause rapid freezing of live tissues on contact - known as 'cryogenic burn' (2), which may lead to severe frostbite in persons closely involved in storage and retrieval of samples from Dewars. Additionally, as liquid nitrogen evaporates it reduces the oxygen concentration in the air and might cause asphyxia, especially in confined spaces (2). In laboratories, biological samples are often stored in cryovials or cryoboxes stacked in stainless steel racks within the Dewar tanks (1). These storage racks are provided with a long shaft to prevent boxes from slipping out from the racks and into the bottom of Dewars during routine handling. All too often, however, boxes or vials with precious samples slip out and sink to the bottom of liquid nitrogen filled tank. In such cases, samples could be tediously retrieved after transferring the liquid nitrogen into a spare container or discarding it. The boxes and vials can then be relatively safely recovered from emptied Dewar. However, the cryogenic nature of liquid nitrogen and its expansion rate makes sunken sample retrieval hazardous. It is commonly recommended by Safety Offices that sample retrieval be never carried out by a single person. Another alternative is to use commercially available cool grabbers or tongs to pull out the vials (3). However, limited visibility within the dark liquid filled Dewars poses a major limitation in their use. In this article, we describe the construction of a Cryotolerant DIY retrieval device, which makes sample retrieval from Dewar containing cryogenic fluids both safe and easy.  相似文献   
997.
There is growing concern that harmful cyanobacterial blooms are increasing in frequency and occurrence around the world. Although nutrient enrichment is commonly identified as a key predictor of cyanobacterial abundance and dominance in freshwaters, several studies have shown that variables related to climate change can also play an important role. Based on our analysis of the literature, we hypothesized that temperature or water‐column stability will be the primary drivers of cyanobacterial abundance in stratified lakes whereas nutrients will be the stronger predictors in frequently mixing water bodies. To test this hypothesis, as well as quantify the drivers of cyanobacteria over different scales and identify interactions between nutrients and climate‐related variables, we applied linear and nonlinear mixed‐effect modeling techniques to seasonal time‐series data from multiple lakes. We first compared time series of cyanobacterial dominance to a published lake survey and found that the models were similar. Using time‐series data of cyanobacterial biomass, we identified important interactions among nutrients and climate‐related variables; dimictic basin experienced a heightened susceptibility to cyanobacterial blooms under stratified eutrophic conditions, whereas polymictic basins were less sensitive to changes in temperature or stratification. Overall, our results show that due to predictable interactions among nutrients and temperature, polymictic and dimictic lakes are expected to respond differently to future climate warming and eutrophication.  相似文献   
998.
Nitrogen (N) added through atmospheric deposition or as fertilizer to boreal and temperate forests reduces both soil decomposer activity (heterotrophic respiration) and the activity of roots and mycorrhizal fungi (autotrophic respiration). However, these negative effects have been found in studies that applied relatively high levels of N, whereas the responses to ambient atmospheric N deposition rates are still not clear. Here, we compared an unfertilized control boreal forest with a fertilized forest (100 kg N ha?1 yr?1) and a forest subject to N‐deposition rates comparable to those in Central Europe (20 kg N ha?1 yr?1) to investigate the effects of N addition rate on different components of forest floor respiration and the production of ectomycorrhizal fungal sporocarps. Soil collars were used to partition heterotrophic (Rh) and autotrophic (Ra) respiration, which was further separated into respiration by tree roots (Rtr) and mycorrhizal hyphae (Rm). Total forest floor respiration was twice as high in the low N plot compared to the control, whereas there were no differences between the control and high N plot. There were no differences in Rh respiration among plots. The enhanced forest floor respiration in the low N plot was, therefore, the result of increased Ra respiration, with an increase in Rtr respiration, and a doubling of Rm respiration. The latter was corroborated by a slightly greater ectomycorrhizal (EM) fungal sporocarp production in the low N plot as compared to the control plot. In contrast, EM fungal sporocarp production was nearly eliminated, and Rm respiration severely reduced, in the high N plot, which resulted in significantly lower Ra respiration. We thus found a nonlinear response of the Ra components to N addition rate, which calls for further studies of the quantitative relations among N addition rate, plant photosynthesis and carbon allocation, and the function of EM fungi.  相似文献   
999.
1000.
百香果内生细菌多样性及促生长特性   总被引:1,自引:0,他引:1  
内生菌可为植物提供营养成分,也可以通过代谢产物促进植物生长,目前很少出现关于百香果(Passiflora edulia Sims)内生菌的研究.百香果是西番莲科西番莲属的一种草质藤本植物,主要生长于亚热带与热带地区,对其内生菌进行分离纯化,依据插入序列指纹图谱(IS-PCR)结果对所得菌株聚类,经16S rRNA基因测...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号