首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8618篇
  免费   893篇
  国内免费   2127篇
  2024年   47篇
  2023年   197篇
  2022年   213篇
  2021年   281篇
  2020年   354篇
  2019年   347篇
  2018年   357篇
  2017年   354篇
  2016年   391篇
  2015年   377篇
  2014年   357篇
  2013年   501篇
  2012年   367篇
  2011年   403篇
  2010年   315篇
  2009年   383篇
  2008年   408篇
  2007年   442篇
  2006年   437篇
  2005年   430篇
  2004年   314篇
  2003年   361篇
  2002年   326篇
  2001年   303篇
  2000年   237篇
  1999年   260篇
  1998年   232篇
  1997年   208篇
  1996年   228篇
  1995年   213篇
  1994年   198篇
  1993年   214篇
  1992年   202篇
  1991年   168篇
  1990年   167篇
  1989年   177篇
  1988年   167篇
  1987年   114篇
  1986年   97篇
  1985年   98篇
  1984年   89篇
  1983年   45篇
  1982年   62篇
  1981年   42篇
  1980年   38篇
  1979年   24篇
  1978年   27篇
  1977年   12篇
  1976年   14篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m–2 y–1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.  相似文献   
202.
Nitrogen fixation by periphyton and plankton was measured on the Amazon flood-plain using the acetylene reduction method calibrated with15N-N2. The average ratio (± SD) of moles C2H4 reduced per mole N2-N fixed was 3.4 ± 0.7, similar to other studies. Periphyton and plankton had high rates of light-dependent nitrogen fixation, with dark nitrogen fixation averaging 26% of the average rates in the light. The average daily (24 h) rates for periphyton nitrogen fixation in 1989 and 1990 were 1.79 and 0.51 mmol N2-N·m–2·d–1 respectively, which are comparable to summer rates in many temperate cyanobacterial assemblages. Nitrogen fixation was depressed at N03 concentrations as low as 0.5 M, and was below detection limits at concentrations of 4 M, which occurred during periods of river flooding. Planktonic nitrogen fixation rates were high (0.5–0.8 mmol N2-N·m–2·d–1) during the high-water and drainage phases of the annual hydrograph when the floodplain waters were draining towards the river (low NO3 ), but rates were undetectable (< 0.05 mmol N2-N·m–2·d–1) when there was river flooding (high NO3 ). Nitrogen fixation by periphyton and plankton in 1989–1990 accounted for approximately 8% of previously reported total annual nitrogen inputs to the floodplain at Lake Calado.  相似文献   
203.
Laboratory rearing of spruce budworm, Choristoneura fumiferana, in conjunction with field rearing, gravimetric analyses, a transfer experiment, and foliage chemical analyses at six dates during the period of budworm feeding activity indicated that the age of balsam fir, Abies balsamea, trees (70-year-old mature trees or 30-year-old juvenile trees) affected tree suitability for the spruce budworm via the chemical profile of the foliage. Insects reared on old trees had greater survival and pupal weight, shorter development times, and caused more defoliation than those reared on young trees. Young trees were more suitable for the development of young larvae (instars 2–5), while old trees were more suitable for the development of older, sixth-instar larvae. These results were confirmed by the laboratory transfer experiment. Young larvae fed foliage from young trees had higher relative growth rates (RGR), digestibility (AD), and efficiency of conversion of ingested foliage (ECI) than those fed foliage from old trees. These differences appeared to be related to the high N:tannins ratio, and the high contents of P present in young trees during the development of the young larvae. Old larvae fed foliage from old trees had higher relative growth rates, relative consumption rates (RCR), and digestibility of the foliage than those fed foliage from young trees. The high digestibility of the foliage of old trees was compensated for by a lower efficiency of conversion of digested food (ECD), which in turn resulted in no significant effect of tree age on the efficiency of conversion of ingested foliage by old larvae. The low relative consumption rate of old larvae fed foliage from young trees appeared to be related to the low N:tannins ratio, and the high contents of bornyl acetate, terpinolene, and °-3-carene present in young trees during the budworm sixth instar. Variations in these compounds in relation to tree age may serve as mechanisms of balsam fir resistance to spruce budworm by reducing the feeding rate of sixth instar larvae.  相似文献   
204.
205.
206.
The purpose of this paper is to describe the effects of CO2 and N treatments on soil pCO2, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO2 and N would cause increased root biomass which would in turn cause increases in both total soil CO2 efflux and microbial respiration. This hypothesis was only supported in part: both CO2 and N treatments caused significant increases in root biomass, soil pCO2, and calculated CO2 efflux, but there were no differences in soil microbial respiration measured in the laboratory. Both correlative and quantitative comparisons of CO2 efflux rates indicated that microbial respiration contributes little to total soil CO2 efflux in the field. Measurements of soil pCO2 and calculated CO2 efflux provided inexpensive, non-invasive, and relatively sensitive indices of belowground response to CO2 and N treatments.  相似文献   
207.
Rhizosphere, fine-root and needle chemistry were investigated in a 28 year old Norway spruce stand in SW Sweden. The uptake and allocation pattern of plant nutrients and aluminium in control plots (C) and plots repeatedly treated with ammonium sulphate (NS) were compared. Treatments started in 1988. Current year needles, one-year-old needles and cylindrical core samples of the LFH-layer and the mineral soil layers were sampled in 1988, 1989 and 1990. Compared to the control plots, pH decreased significantly in the rhizosphere soil in the NS plots in 1989 and 1990 while the SO4-S concentration increased significantly. Aluminium concentration in the rhizosphere soil was generally higher in the NS plots in all soil layers, except at 0–10 cm depths, both in 1989 and 1990. Calcium, Mg and K concentrations also increased after treatment with ammonium sulphate. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment significantly reduced Mg concentrations in fine roots in all layers in 1990. A similar trend was found in the needles. Ca concentrations in fine roots were significantly lower in the NS plots in the LFH layer in 1990 and the same pattern was found in the current needles. The N and S concentrations of both fine roots and needles were significantly higher in the NS plots. It was suggested that NS treatment resulted in displacement of Mg, Ca and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.  相似文献   
208.
A simple model was developed to estimate the contribution of nitrogen (N) mineralization to the N supply of crops. In this model the soil organic matter is divided into active and passive pools. Annual soil mineralization of N is derived from the active pool. The active pool comprises stabilized and labile soil organic N. The stabilized N is built up from accumulated inputs of fresh organic N during a crop rotation but the labile N is a fraction of total N added, which mineralizes faster than the stabilized N. The passive pool is considered to have no participation in the mineralization process. Mineralization rates of labile and stabilized soil organic N from different crop residues decomposing in soil were derived from the literature and were described by the first-order rate equation dN/dt =-K*N, where N is the mineralizable organic N from crop residues andK is a constant. The data were groupedK 1 by short-term (0–1 year) andK 2 by long-term (0–10 years) incubation. Because the range of variation inK 2 was smaller than inK 1 we felt justified in using an average value to derive N mineralization from the stabilized pool. The use of a constant rate ofK 1 was avoided so net N mineralization during the first year after addition is derived directly from the labile N in the crop residues. The model was applied to four Chilean agro-ecosystems, using daily averages of soil temperature and moisture. The N losses by leaching were also calculated. The N mineralization varied between 30 and 130 kg N ha–1 yr–1 depending on organic N inputs. Nitrogen losses by leaching in a poorly structured soil were estimated to be about 10% of total N mineralized. The model could explain the large differences in N- mineralization as measured by the potential N mineralization at the four sites studied. However, when grassland was present in the crop rotation, the model underestimated the results obtained from potential mineralization.  相似文献   
209.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   
210.
The pH of the nutrient solution bathing the roots of four-month-oldPinus contorta var.latifolia Englm. seedlings was monitored continuously between additions of nutrients. Nitrogen was supplied in the form of NH4NO3, and was added three times per week in amounts relative to seedling fresh weight. No pH change was associated with the nutrient addition cycle; however, extinguishing of the lights at night resulted in a decrease in pH of almost half a pH unit in the first hour. The pH reverted to normal within a few hours. Re-illumination resulted in a pH increase of a smaller magnitude, but over a similar time span. Estimation of the proton extrusion rate gave values of about 17 µmol (g FW root)–1 h–1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号