首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7625篇
  免费   813篇
  国内免费   1901篇
  2024年   32篇
  2023年   179篇
  2022年   174篇
  2021年   247篇
  2020年   312篇
  2019年   315篇
  2018年   304篇
  2017年   318篇
  2016年   360篇
  2015年   346篇
  2014年   322篇
  2013年   445篇
  2012年   327篇
  2011年   362篇
  2010年   273篇
  2009年   332篇
  2008年   364篇
  2007年   384篇
  2006年   373篇
  2005年   386篇
  2004年   281篇
  2003年   330篇
  2002年   276篇
  2001年   267篇
  2000年   212篇
  1999年   232篇
  1998年   212篇
  1997年   184篇
  1996年   205篇
  1995年   183篇
  1994年   167篇
  1993年   188篇
  1992年   174篇
  1991年   148篇
  1990年   156篇
  1989年   164篇
  1988年   166篇
  1987年   106篇
  1986年   89篇
  1985年   87篇
  1984年   87篇
  1983年   37篇
  1982年   51篇
  1981年   38篇
  1980年   30篇
  1979年   28篇
  1978年   27篇
  1977年   11篇
  1976年   14篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Nostoc ANTH metabolizes ethylenediamine (EDA) as sole nitrogen source but not as a carbon source. EDA is assimilated by the glutamine synthetase-glutamate synthase pathway. EDA represses heterocyst formation and nitrogenase activity but this is reversed by l-methionine-dl-sulphoximine.The authors are with the Department of Microbiology, Barkatullah University, Bhopal 462 026, India  相似文献   
202.
氮肥和底墒对小麦籽粒灌浆过程的调节效应分析   总被引:5,自引:0,他引:5  
以氮肥和底墒为决策变量,采用最优二次D饱和设计,用Logistic方程拟合各水肥处理的籽粒充实过程,并推导出一系列次级参数,分别建立了小麦籽粒灌浆强度与持续时间参数的数学模型。结果表明:生长在氮肥或底墒逆境条件下的小麦受精子房的生长潜势(Co)较大,并随逆境条件的改善而降低;千粒重(Yo)与灌浆快增期(T)的长短、最大灌浆速率(R_(max))和平均灌浆速率(R)无明显相关性,却与起始生长势、灌浆系数(T·R_(max))高度正相关,并且千粒重与灌浆系数的相关性明显大于千粒重与起始生长势的相关性;氮肥和底墒对籽粒灌浆特性具有显著的调节作用。同时还阐述了调节这些参数的水肥栽培途径。  相似文献   
203.
204.
205.
206.
The content of polyamines and proline was much lower in a normal (N) callus of Beta vulgaris L. than in a fully habituated hyperhydric (H) callus. The H callus also contained more glutamate and had a higher glutamate dehydrogenase activity. The excess of glutamate, in this chlorophyll-deficient callus, was linked to accumulation of proline and polyamines. Experiments with α-difluoromethylornithine (DFMO) and α-difluoromethylarginine (DFMA) showed that both ornithine decarboxylase and arginine decarboxylase participated in the synthesis of polyamines (especially spermidine and putrescine) and removal of ammonia. It is hypothesized that the H callus was subjected to ammonia stress from the start of the culture. Experiments with gabaculine, an inhibitor of ornithine aminotransferase, showed that this enzyme linked proline degradation to polyamine synthesis through the production of ornithine. This disturbed nitrogen metabolism appeared to be characteristic of the fully habituated callus and might explain the low growth of this hyperhydric tissue.  相似文献   
207.
Lee  R. B.  Ratcliffe  R. G. 《Plant and Soil》1993,155(1):45-55
The cytoplasmic and vacuolar pools of ammonium, inorganic phosphate and potassium can be studied non-invasively in plant tissues using high resolution nuclear magnetic resonance spectroscopy. The techniques that allow these pools to be discriminated in vivo are described and their application to plants is reviewed with reference to the phosphorus, nitrogen and potassium nutrition of root tissues.  相似文献   
208.
Ito  Osamu  Matsunaga  Ryoichi  Tobita  Satoshi  Rao  Theertham P.  Devi  Y. Gayatri 《Plant and Soil》1993,155(1):341-344
A medium-duration pigeonpea cultivar (ICP 1–6) and a hybrid sorghum (CSH 5) were grown on a shallow Alfisol in monocropping and intercropping systems. Using a monolith method, spatial distribution of nodulation, acetylene reduction activity (ARA) and root respiration were measured.The number, mass and ARA of nodules decreased exponentially with distance from the plant base except at the late reproductive stage. Nodulation and ARA tended to be higher in the intercrop than in the monocrop.Respiration rate of roots increased with distance from the plant base and reached a maximum value at about 20–30 cm. The rate was higher in pigeonpea than in sorghum and also higher in intercrop than in monocrop.This study suggests that pigeonpea roots are physiologically more active than sorghum roots, implying that pigeonpea may become a strong competitor for nutrients in the soil when intercropped. The nitrogen-fixing ability of pigeonpea may be enhanced by intercropping because the sorghum rapidly absorbed inorganic N which would otherwise inhibit N2 fixation.  相似文献   
209.
Effects of mineral nitrogen (2, 4, 6 and 8 m M NH4NO3) and nodulation with Rhizobium on frost hardiness in seedlings of white clover ( Trifolium repens ) have been studied. Seedlings of a population from Bodø (67°N lat.) were grown in Leonard jars under controlled conditions in a phytotron. For induction of frost hardening, plants were first exposed to 12 h photoperiod conditions for 2 weeks at 18°C, then for 2 weeks at 6°C and finally for 2 weeks at 0.5°C. Frost hardiness after treatments at 6 and 0.5°C was significantly enhanced by increasing nitrogen supply and was positively correlated with total nitrogen content of the stolons. Frost hardiness of nodulated plants correlated to the tissue nitrogen concentration. Content of soluble proteins in stolons decreased during hardening at 6°C but did not change during treatment at 0.5°C. There were minor changes in total amount of free amino acids during hardening. Both absolute and relative amounts of proline and arginine increased, and those of asparagine decreased during hardening. Absolute amounts of all free amino acids increased with increasing nitrogen supply, but the changes during hardening were similar in all treatments. There was a significant increase in the content of soluble carbohydrates during hardening. However, this increase was inversely related to nitrogen supply.  相似文献   
210.
It has been demonstrated previously that field pea (Pisum sativum L. cv. Express) grown in hydroponic culture on a complete nutrient solution with low NH4+ concentrations (<0.5 mM) will produce a larger than normal proliferation of nodules. Peas grown in the absence of mineral N in hydroponic culture have been shown to rapidly autoregulate nodulation, forming a static nodule number by 14 to 21 days after planting. The present study further characterizes the effect of NH4+ concentration in hydroponic culture on nodulation and nodule growth. Peas were grown continually for 4 weeks at NH4+ concentrations that were autoregulatory (0.0 mM), stimulatory (0.2 mM) or inhibitory (1.0 mM), or peas were transferred between autoregulatory or NH4+ inhibited and stimulatory solutions after 2 weeks. The peas nodulated as expected when grown under constant autoregulatory, stimulatory or inhibitory concentrations of NH4+. When peas were transferred from the inhibitory (1.0 mM) to the stimulatory solution (0.2 mM) a massive proliferation of nodule primordia over the entire root system was observed within 3 days of the transfer. When they were transferred from the autoregulatory (0.0 mM) to the stimulatory (0.2 mM) solution a 10-day delay occurred before a proliferation in nodule primordia occurred at distal regions of the root system. These findings support our hypothesis that low concentrations (<1.0 mM) of NH4+ in hydroponic culture cause a suppression of autoregulation in pea. In addition, the temporal and spatial differences in nodule proliferation between transfer treatments demonstrate at a whole plant level that autoregulation and NH4+ inhibition suppress early nodule development via different mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号