首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17655篇
  免费   1633篇
  国内免费   3146篇
  2024年   41篇
  2023年   329篇
  2022年   401篇
  2021年   499篇
  2020年   572篇
  2019年   643篇
  2018年   594篇
  2017年   611篇
  2016年   727篇
  2015年   675篇
  2014年   784篇
  2013年   1107篇
  2012年   757篇
  2011年   819篇
  2010年   628篇
  2009年   878篇
  2008年   935篇
  2007年   960篇
  2006年   958篇
  2005年   868篇
  2004年   725篇
  2003年   752篇
  2002年   642篇
  2001年   598篇
  2000年   469篇
  1999年   538篇
  1998年   439篇
  1997年   380篇
  1996年   395篇
  1995年   363篇
  1994年   355篇
  1993年   374篇
  1992年   342篇
  1991年   300篇
  1990年   285篇
  1989年   252篇
  1988年   251篇
  1987年   182篇
  1986年   159篇
  1985年   162篇
  1984年   149篇
  1983年   89篇
  1982年   107篇
  1981年   78篇
  1980年   65篇
  1979年   49篇
  1978年   39篇
  1977年   23篇
  1976年   36篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
301.
Large earthen-walled lysimeters at the San Dimas Experimental Forest in southern California present a unique opportunity to assess vegetation effects on biogeochemical processes and cation release by weathering in controlled soil-vegetation systems where archived samples of soil parent material are available for comparison. The lysimeters were filled in 1937 with homogenized fine sandy loam derived on site from the weathering of diorite, and planted in 1946 with scrub oak (Quercus dumosa) and Coulter pine (Pinus coulteri). Changes in base cation contents were measured in above-ground biomass, and total and exchangeable soil pools to a depth of 1 meter. All cations in the non-exchangeable soil pool decreased relative to the initial fill material, indicating release by weathering. Sodium and K were depleted from both exchangeable and non-exchangeable pools of the soils. Plant uptake of Na was minimal, whereas K storage in vegetation exceeded the loss from the exchangeable soil pool. In both soil-vegetation systems, but especially for oak, there was an increase in exchangeable Ca and Mg. For all base cations, storage in above-ground biomass was greater for oak, whereas losses by weathering from the non-exchangeable soil pool were greater under pine. Strong evidence supports biocycling as a controlling mechanism resulting in greater Ca and Mg release by weathering under pine. In addition, decreases in non-exchangeable Ca and Mg were strongly correlated to decrease in Si under oak, whereas no correlation was observed under pine. We conclude that weathering reactions or stoichiometry differed between vegetation types.Corresponding author  相似文献   
302.
The areal distribution of organic C contents, 13C values, total N and P and biogenic Si contents in surficial sediments were used to study the distribution, origin and diagenetic transformations of sedimented biogenic debris in the eutrophic subalpine Lake Bled (Slovenia), which for most of the yearhas an anoxic hypolimnion. The influence of an allochthonous input, restricted to the western basin, was clearly traced by higher organic C and total N and P contents, higher 13C values, and higher sedimentation rate in comparison to the eastern basin. The low 13C values of sedimentary organic matter in the major part of the lake, lower than the 13C values of different types of organic matter, suggest that this sedimentary organic matter is most probably the product of a microbial community and not a residue of primary production.The temporal variation of benthic diffusive fluxes of NH4, Si and PO4, derived from modelling the pore water profiles, was related to sedimentation of phytoplanktonic blooms, while the PO4 fluxes were also dependent on changing redox conditions at the sediment-water interface in the period of the winter-spring overtum. The removal of PO4 in pore waters is probably due to the adsorption of phosphate and precipitation of apatite and vivianite. The budget of C, N and P at the sediment-water interface revealed a high recycling efficiency (>70%), also confirmed by the rather uniform (or only slightly decreasing) vertical profiles of organic C, total N and P in sediment cores and C/N and C/P ratios. The percentage of biogenic Si recycling is low (<10%), suggesting its removal in sediments.  相似文献   
303.
Modeling the temperature response of nitrification   总被引:3,自引:2,他引:1  
To model nitrification rates in soils, it is necessary to have equations that accurately describe the effect of environmental variables on nitrification rates. A variety of equations have been used previously to describe the effect of temperature on rates of microbial processes. It is not clear which of these best describes the influence of temperature on nitrification rates in soil. I compared five equations for describing the effects of temperature on nitrification in two soils with very different temperature optima from a California oak woodland-annual grassland. The most appropriate equation depended on the range of temperatures being evaluated. A generalized Poisson density function best described temperature effects on nitrification rates in both soils over the range of 5 to 50 °C; however, the Arrhenius equation best described temperature effects over the narrower range of soil temperatures that normally occurs in the ecosystem (5 to 28 °C). Temperature optima for nitrification in most of the soils were greater than even the highest soil temperatures recorded at the sites. A model accounting for increased maintenance energy requirements at higher temperatures demonstrates how net energy production, rather than the gross energy production from nitrification, is maximized during adaptation by nitrifier populations to soil temperatures.  相似文献   
304.
Grass species and soil type effects on microbial biomass and activity   总被引:15,自引:0,他引:15  
We evaluated plant versus soil type controls on microbial biomass and activity by comparing microbial biomass C, soil respiration, denitrification potential, potential net N mineralization and nitrification in different soils supporting four grass species, and by growing a group of 10 different grass species on the same soil, in two experiments respectively. In the first experiment, none of the microbial variables showed significant variation with grass species while all variables showed significant variation with soil type, likely due to variation in soil texture. In the second experiment, there were few significant differences in microbial biomass C among the 10 grasses but there were significant relationships between variation in microbial biomass C and potential net N mineralization (negative), soil respiration (positive) and denitrification (positive). There was no relationship between microbial biomass C and either plant yield or plant N concentration. The results suggest that 1) soil type is a more important controller of microbial biomass and activity than grass species, 2) that different grass species can create significant, but small and infrequent, differences in microbial biomass and activity in soil, and 3) that plant-induced variation in microbial biomass and activity is caused by variation in labile C input to soil.  相似文献   
305.
We have investigated the water use efficiency of whole plants and selected leaves and allocation patterns of three wheat cultivars (Mexipak, Nesser and Katya) to explore how variation in these traits can contribute to the ability to grow in dry environments. The cultivars exhibited considerable differences in biomass allocation and water use efficiency. Cultivars with higher growth rates of roots and higher proportions of biomass in roots (Nesser and Katya) also had higher leaf growth rates, higher proportions of their biomass as leaves and higher leaf area ratios. These same cultivars had lower rates of transpiration per unit leaf area or unit root weight and higher biomass production per unit water use. They also had higher ratios of photosynthesis to transpiration, and lower ratios of intercellular to external CO2 partial pressure. The latter resulted from large differences in stomatal conductance associated with relatively small differences in rates of photosynthesis. There was little variation between cultivars in response to drought, and differences in allocation pattern and plant water use efficiency between cultivars as found under well-watered conditions persisted under dry conditions. At the end of the non-watered treatment, relative growth rates and transpiration rates decreased to similar values for all cultivars. High ratios of photosynthesis to transpiration, and accordingly high biomass production per unit of transpiration, is regarded as a favourable trait for dry environments, since more efficient use of water postpones the decrease in plant water status.  相似文献   
306.
The interactive effects of increased carbon dioxide (CO2) concentration and ultraviolet-B (UV-B, 280–320 nm) radiation on Acacia karroo Hayne, a C3 tree, and Themeda triandra Forsk., a C4 grass, were investigated. We tested the hypothesis that A. karroo would show greater CO2-induced growth stimulation than T. triandra, which would partially explain current encroachment of A. karroo into C4 grasslands, but that increased UV-B could mitigate this advantage. Seedlings were grown in open-top chambers in a greenhouse in ambient (360 μmol mol-1) and elevated (650 μmol mol-1) CO2, combined with ambient (1.56 to 8.66 kJ m-2 day-1) or increased (2.22 to 11.93 kJ m-2 day-1) biologically effective (weighted) UV-B irradiances. After 30 weeks, elevated CO2 had no effect on biomass of A. karroo, despite increased net CO2 assimilation rates. Interaction between UV-B and CO2 on stomatal conductance was found, with conductances decreasing only where elevated CO2 and UV-B were supplied separately. Increases in water use efficiencies, foliar starch concentrations, root nodule numbers and total nodule mass were measured in elevated CO2. Elevated UV-B caused only an increase in foliar carbon concentrations. In T. triandra, net CO2 assimilation rates were unaffected in elevated CO2, but stomatal conductances and foliar nitrogen concentrations decreased, and water use efficiencies increased. Biomass of all vegetative fractions, particularly leaf sheaths, was increased in elevated CO2. and was accompanied by increased leaf blade lengths and individual leaf and leaf sheath masses. However, tiller numbers were reduced in elevated CO2. Significantly moderating effects of elevated UV-B were apparent only in individual masses of leaf blades and sheaths, and in total sheath and shoot biomass. The direct CO2-induced growth responses of the species therefore do not support the hypothesis of CO2-driven woody encroachment of C4 grasslands. Rather, differential changes in resource use efficiency between grass and woody species, or morphological responses of grass species, could alter the competitive balance. Increased UV-B radiation is unlikely to substantially alter the CO2 response of these species.  相似文献   
307.
A telescopic method for photographing within 8×8 cm minirhizotrons   总被引:1,自引:0,他引:1  
The volatile organic compounds produced during a sequence of soil incubations under controlled conditions, with either added NH4 +-N or NO3 --N, were collected and identified. The nature and relative amounts of the volatile organic compounds produced by the microorganisms in the soils were remarkably reproducible and consistent.  相似文献   
308.
In short-season soybean production areas, low soil temperature is the major factor limiting plant growth and yield. The decreases in soybean yield at low temperatures are mainly due to nitrogen limitation. Genistein, the most effective plant-to-bacterium signal in the soybean (Glycine max (L.) Merr.) nitrogen fixation symbiosis, was used to pretreat Bradyrhizobium japonicum. We have previously reported that this increased soybean nodulation and nitrogen fixation in growth chamber studies. Two field experiments were conducted on two adjacent sites in 1994 to determine whether the incubation of B. japonicum with genistein, prior to application as an inoculant, or genistein, without B. japonicum, applied onto seeds in the furrow at the time of planting, increased soybean grain yield and protein yield in short season areas. The results of these experiments indicated that genistein-preincubated bradyrhizobia increased the grain yield and protein yield of AC Bravor, the later maturing of the two cultivars tested. Genistein without B. japonicum, applied onto seeds in the furrow at the time of planting also increased both grain and protein yield by stimulation of native soil B. japonicum. Interactions existed between genistein application and soybean cultivars, and indicated that the cultivar with the greatest yield potential responded more to genistein addition.  相似文献   
309.
A review is given of the prospects for using process-oriented models of water and nutrient uptake in improving integrated agriculture. Government-imposed restrictions on the use of external inputs will increase the likelihood of (temporary) nutrient or water stress in crop production in NW Europe and thus a better understanding is required of shoot-root-soil interactions than presently available. In modelling nutrient and water uptake, three approaches are possible: 1) models-without-roots, based on empirically derived efficiency ratios for uptake of available resources, 2) models evaluating the uptake potential of root systems as actually found in the field and 3) models which also aim at a prediction of root development as influenced by interactions with environmental factors. For the second type of models the major underlying processes are known and research can concentrate on model refinement on the one hand and practical application on the other. The main parameters required for such models are discussed and examples are given of practical applications. For the third type of models quantification of processes known only qualitatively is urgently needed.  相似文献   
310.
The natural abundance of 15N was examined in soil profiles from forests and pastures of the Brazilian Amazon Basin to compare tropical forests on a variety of soil types and to investigate changes in the sources of nitrogen to soils following deforestation for cattle ranching. Six sites in the state of Rondônia, two sites in Pará and one in Amazonas were studied. All sites except one were chronosequences and contained native forest and one or more pastures ranging from 2 to 27 years old. Forest soil 15N values to a depth of 1 m ranged from 8 to 23 and were higher than values typically found in temperate forests. A general pattern of increasing 15N values with depth near the soil surface was broadly similar to patterns in other forests but a decrease in 15N values in many forest profiles between 20 and 40 cm suggests that illuviation of 15N-depleted nitrate may influence total soil 15N values in deeper soil where total N concentrations are low. In four chronosequences in Rondônia, the 15N values of surface soil from pastures were lower than in the original forest and 15N values were increasingly depleted in older pastures. Inputs of atmospheric N by dinitrogen fixation could be an important N source in these pastures. Other pastures in Amazonas and Pará and Rondônia showed no consistent change from forest values. The extent of fractionation that leads to 15N enrichment in soils was broadly similar over a wide range of soil textures and indicated that similar processes control N fractionation and loss under tropical forest over a broad geographic region. Forest 15N profiles were consistent with conceptual models that explain enrichment of soil 15N values by selective loss of 14N during nitrification and denitrification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号