首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17655篇
  免费   1633篇
  国内免费   3146篇
  2024年   41篇
  2023年   329篇
  2022年   401篇
  2021年   499篇
  2020年   572篇
  2019年   643篇
  2018年   594篇
  2017年   611篇
  2016年   727篇
  2015年   675篇
  2014年   784篇
  2013年   1107篇
  2012年   757篇
  2011年   819篇
  2010年   628篇
  2009年   878篇
  2008年   935篇
  2007年   960篇
  2006年   958篇
  2005年   868篇
  2004年   725篇
  2003年   752篇
  2002年   642篇
  2001年   598篇
  2000年   469篇
  1999年   538篇
  1998年   439篇
  1997年   380篇
  1996年   395篇
  1995年   363篇
  1994年   355篇
  1993年   374篇
  1992年   342篇
  1991年   300篇
  1990年   285篇
  1989年   252篇
  1988年   251篇
  1987年   182篇
  1986年   159篇
  1985年   162篇
  1984年   149篇
  1983年   89篇
  1982年   107篇
  1981年   78篇
  1980年   65篇
  1979年   49篇
  1978年   39篇
  1977年   23篇
  1976年   36篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 781 毫秒
251.
Nitrogen fixed in 13 provenances of Acacia albida and 11 isolines of Leucaena leucocephala inoculated with effective Rhizobium strains was measured by 15N techniques and the total N difference method. In the test soil, on the average, L. leucocephala derived about 65% of its total N from atmospheric N2 fixation compared to about 20% by A. albida. Significant differences in the percentage of N derived from atmospheric N2 (% Ndfa) occurred, between provenances or isolines within species. The % Ndfa ranged from 37 to 74% within L. leucocephala and from 6 to 37 within A. albida; (equivalent to 20–50 mg N plant–1 and 4–37 mg N plant–1 for the two species over three months, respectively) and was correlated with the nodule mass (r=0.91). The time course of N2 fixation of three selected provenances (low, intermediate and good fixers) was followed at 12 weekly intervals over a 36 week period. The % Ndfa of all provenances and isolines increased with time; and except for one of the L. leucocephala provenances, % Ndfa was similar within species at the 36 weeks harvest. There was a significant correlation between % Ndfa and the amount of N2 fixed (r=0.96). Significant interactions occurred between provenances and N treatments and often growth of uninoculated but N fertilized plants was less variable than for inoculated unfertilized plants.  相似文献   
252.
The shoot growth of compatible ( Prunus persica L. Batsch cv. Springtime grafted on Prunus cerasifera L. Ehrh cv. Myrobolan P2032) and incompatible ( Prunus persica L. Batsch cv. Springtime grafted on Prunus cerasifera L. Ehrh cv. Myrobolan P18) peach/plum grafts was observed over a period of 100 days after grafting under controlled conditions. Leaf and root activities were determined by studying carbon assimilation and partitioning, leaf mineral contents and water relations. Shoot length and leaf number were not significantly affected in the incompatible combination during the first 55 days after grafting, but then, shoot growth rate was significantly reduced. Final total dry weights of the shoot were similar in both graft combinations. The incompatible combination did not show any water stress. Soluble sugar and starch contents increased in the leaves of the incompatible combination, accounting for about 36% of the increase of leaf dry weight per unit area. Photosynthesis was affected by the compatibility of the grafts. Leaf nitrogen content (% dry weight) fell in the incompatible graft combination 65 days after grafting. However, nitrogen content on an area basis was not affected. The possibility of nitrogen stress is discussed.  相似文献   
253.
It is commonly known that calcium promotes NO3 - uptake in many crop species. However, calcium enhancement of NH4 + uptake by plants has received little attention. This study aimed to evaluate the effect of Ca supplements on NH4 + uptake and plant growth in solution cultured rice. Supplemental Ca applied at vegetative and reproductive phases of plant ontogeny tended to stimulate NH4 + absorption, and accordingly resulted in a better straw and grain yield. However, excessively supplied Ca (400 ppm) was detrimental to plant growth. Increases in straw and grain yield observed at Ca levels up to 300 ppm were linked to the Ca-enhanced activities of glutamine synthetase (GS), glutamate synthase (GOGAT), and ribulose 1, 5-bisphosphate carboxylase/oxygenase (Rubisco).  相似文献   
254.
Soaking the seeds of mungbean (Vigna radiata L. Wilczek cv. K-851) in pyridoxine solution significantly enhanced leaf N, P and K concentrations at different growth stages, and seed protein concentration at harvest. Leaf N, P and K were significantly correlated with root length and seed protein. Thus, pyridoxine application not only enhanced the availability of nutrients to plants but also was responsible for the maintenance of a favourable source-sink relationship, thus ensuring more nutritious seeds of mungbean.  相似文献   
255.
Grasses grown in mixture with nodulated legumes often are N-limited, but N fertilization may result in reductions of N2 fixation and legume stands. We studied N-fertilizer effects on N2 fixation for three binary legume-grass mixtures in Uruguay. Replicated swards of white clover (Trifolium repens L.) (WC), red clover (Trifolium pratense L.) (RC), or birdsfoot trefoil (Lotus corniculatus L.) (BT), each in combination with tall fescue (Festuca arundinacea Schreb) (TF) at two legume proportions were sown in 1983 (Exp. 1) and 1984 (Exp. 2). In the fall of 1984, N treatments at 100 kg ha−1 and controls were randomly assigned to subplots in Exp. 1 (established swards) and in Exp. 2 (at seeding). The soil for both experiments was a fine, montmorillonitic, mesic, Typic Argiudolls. Herbage fixed-N was estimated by 15N isotope-dilution with pure stands of TF as reference. In both experiments, N fertilization reduced the proportion of legume N derived from air (% Ndfa) and increased herbage yield only during the first 18 to 20 weeks after application. Fertilizer-N reduced annual fixed-N yield from 178 to 148 kg ha−1 in Exp. 1 and from 65 to 29 kg ha−1 in Exp. 2 Fixed-N yield for BT was markedly reduced by N in both experiments (33 to 53%), whereas for the clovers reduction was lesser in Exp. 1 (9 to 13%) than in Exp. 2 (46 to 64%). Negative effects of N on % Ndfa were more evident for the high legume proportion. We conclude that fertilization with 100 kg N ha−1 reduced % Ndfa only for the immediate 18 to 20 weeks after application. Fertilizer-induced reduction of fixed-N yields lasted longer because of a more prolonged depression of legume proportion, especially for BT and for newly seeded swards. Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012). Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012).  相似文献   
256.
Tomato root growth and distribution were related to inorganic nitrogen (N) availability and turnover to determine 1) if roots were located in soil zones where N supply was highest, and 2) whether roots effectively depleted soil N so that losses of inorganic N were minimized. Tomatoes were direct-seeded in an unfertilized field in Central California. A trench profile/monolith sampling method was used. Concentrations of nitrate (NO3 -) exceeded those of ammonium (NH4 +) several fold, and differences were greater at the soil surface (0–15 cm) than at lower depths (45–60 cm or 90–120 cm). Ammonium and NO3 - levels peaked in April before planting, as did mineralizable N and nitrification potential. Soon afterwards, NO3 - concentrations decreased, especially in the lower part of the profile, most likely as a result of leaching after application of irrigation water. Nitrogen pool sizes and rates of microbial processes declined gradually through the summer.Tomato plants utilized only a small percentage of the inorganic N available in the large volume of soil explored by their deep root systems; maximum daily uptake was approximately 3% of the soil pool. Root distribution, except for the zone around the taproot, was uniformly sparse (ca. 0.15 mg dry wt g-1 soil or 0.5 cm g-1 soil) throughout the soil profile regardless of depth, distance from the plant stem, or distance from the irrigation furrow. It bore no relation to N availability. Poor root development, especially in the N-rich top layer of soil, could explain low fertilizer N use by tomatoes.  相似文献   
257.
Short-term studies for comparing some primary metabolic and growth-responses to salt stress in seedlings of two maize genotypes differing in drought resistance were carried out under controlled conditions. Both genotypes revealed high yielding ability in favourable environments. Treatments: Control (Hoagland-Arnon No 1 solution) and salt stress (Hoagland-Arnon solution plus NaCl, s = –0.84MPa). It was found that in both genotypes the activity of the principal metabolic pathway supplying reduced nitrogen (15N) for the synthesis of amino acids and proteins as well as the assimulatory number (14CO2—assimilation relation rate per chlorophyll unit) were decreased under the effect of the stress. These effects were more marked in the resistant genotype. In this genotype the stress induced metabolic activity decline was accompanied by a corresonding reduction of the relative growth rate. Conversely, continuing growth, resulting probably from accumulation of solutes, was observed in the susceptible genotype.On the basis of these and other observations it is assumed that the resistant genotype manifests short-term energy saving stress reactions.  相似文献   
258.
The symbiotic effectiveness of Bradyrhizobium strains isolated from three species of Parasponia and from legumes were compared on Parasponia grown in Leonard-jars. Effectiveness of each symbiotic association was estimated from dry weight and total nitrogen of shoots and nodules of plants grown on medium free of combined nitrogen. Twenty strains isolated from three species of Parasponia were found to vary in their effectiveness on P. andersonii, the least effective fixing one fifth of the nitrogen of the most effective strains. The outcome of the symbiosis was not associated with the host source of the test strain. P. andersonii, P. rugosa and P. rigida responded differently to a selection of seven strains of Parasponia Bradyrhizobium; some strains were either ineffective or fully effective on each host, while others varied in their symbiotic performance. P. andersonii fixed significantly (P < 0.001) larger quantities of nitrogen than either P. rugosa or P. rigida with p. rigida being the least effective. In contrast to Bradyrhizobium strains from Parasponia spp. which formed nodules rapidly (within 11–20 days), nine strains isolated from legumes required between 25 and 74 days to form partially effective nodules. The thre Parasponia species formed relatively large quantities of nodule tissue relative to the amount of nitrogen fixed and shoot dry matter produced. The Bradyrhizobium isolated from Parasponia plants growing in Papua New Guinea soils could be grouped together on the basis of their infection characteristics on Parasponia and legumes.  相似文献   
259.
The effects of inoculating soil with a water suspension of Bradyrhizobium japonicum (i) at seeding, (ii) 7, or (iii) 14 days after planting (DAP), (iv) seed slurry inoculation and (v) seed slurry supplemented with postemergence inoculation of a water suspension of Bradyrhizobium at 7 or (vi) 14 DAP, on nodulation, N2 fixation and yield of soybean (Glycine max. [L.] Merrill) were compared in the greenhouse. The 15N isotope dilution technique was used to quantify N2 fixed at flowering, early pod filling and physiological maturity stages (36, 52 and 70 DAP, respectively). On average, the water suspension inoculation formed the greatest number of nodules, and seed plus postemergence inoculation formed slightly more nodules than the seed-only inoculated plants (27, 19 and 12 nodules/plant respectively at physiological maturity). Seed slurry inoculation followed by postemergence inoculation at 14 DAP gave the highest nodule weight, with the plants fixing significantly more (P<0.05) N2 (125 mg N plant−1 or 56% N) than any other treatment (mean, 75 mg plant−1 or 35% N). However, the higher N2 fixation was not translated into higher N or dry matter yields. Estimates of N2 fixed by the ostemergence Bradyrhizobium inoculations as well as plant yield were not significantly different from those of the seed slurry inoculation. Thus, delaying inoculation (e.g., by two weeks as in this study) did not reduce the symbiotic ability of soybean plants.  相似文献   
260.
F. Azam 《Plant and Soil》1990,125(2):255-262
A pot experiment was conducted to study the effect of organic and inorganic nitrogen (N) sources on the yield and N uptake of rice from applied and native soil-N. The residual effect of these N sources on a succeeding wheat crop was also studied. Organic N was applied in the form of 15N-labelled Sesbania aculeata L., a legume, and inorganic N in the form of 15N-labelled ammonium sulphate. The two sources were applied to the soil separately or together at the time of transplanting rice. Recovery of N by rice from both the applied sources was quite low but both sources caused significant increases in biomass and N yield of rice. Maximum increase was recorded in soil treated with organic N. The residual value of the two materials as source of N for wheat was not significant; the wheat took up only a small fraction of the N initially applied. Loss of N occurred from both applied N sources, the losses being more from inorganic N. Both applied N sources caused a substantial increase in the availability of soil-N to rice and wheat; most of this increase was due to organic N and was attributed to the so-called ‘priming’ effect or ANI (added nitrogen interaction) of the applied material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号