首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9724篇
  免费   1066篇
  国内免费   2073篇
  2024年   40篇
  2023年   249篇
  2022年   225篇
  2021年   344篇
  2020年   415篇
  2019年   442篇
  2018年   399篇
  2017年   420篇
  2016年   459篇
  2015年   442篇
  2014年   449篇
  2013年   591篇
  2012年   429篇
  2011年   442篇
  2010年   352篇
  2009年   430篇
  2008年   465篇
  2007年   501篇
  2006年   503篇
  2005年   499篇
  2004年   384篇
  2003年   384篇
  2002年   338篇
  2001年   315篇
  2000年   254篇
  1999年   279篇
  1998年   242篇
  1997年   207篇
  1996年   222篇
  1995年   208篇
  1994年   196篇
  1993年   202篇
  1992年   190篇
  1991年   170篇
  1990年   169篇
  1989年   174篇
  1988年   166篇
  1987年   103篇
  1986年   96篇
  1985年   98篇
  1984年   90篇
  1983年   35篇
  1982年   50篇
  1981年   37篇
  1980年   38篇
  1979年   32篇
  1978年   29篇
  1977年   9篇
  1976年   14篇
  1958年   9篇
排序方式: 共有10000条查询结果,搜索用时 609 毫秒
21.
A hypothesis is presented that the availability of water for export of nitrogenous products from legume nodules is a major factor limiting the efficiency of symbiotic nitrogen fixation. Water for export of solutes in the xylem probably depends largely on the import of water and reduced carbon in the phloeum, and one function of respiration may be to dispose of reduced carbon in order to increase the supply of water. A second hypothesis presented is that control of gas diffusion in soybean nodules is largely restricted to the cortex nearby the vascular bundles, thus making possible the linkage of solute balances in xylem and phloem with resistance to diffusion. These concepts are used in a re-examination of literature on manipulations of nodules and nodulated plants such as lowering of light levels, water stress, defoliation, stem girdling, and alteration of oxygen supply. The concept of translocation as a major factor limiting efficiency of symbiotic fixation is consistent with the failure of superior rhizobial isolates to improve N input significantly, and this limitation could also prevent exploitation of superior bacterial symbionts in the future  相似文献   
22.
Abstract. Gas exchange, leaf-nitrogen concentration and water potential were measured in early and late spring in early successional herbaceous plants occurring after cutting and after fire, and in mature woody species from the Mediterranean climax community Quercetum ilicis in central Italy. Net photosynthesis peaked in early spring in all species studied when values for temperature and light were lower but leaf-nitrogen content was higher as compared to late spring, suggesting that nitrogen more than energy input controlled photosynt-hetic rates. Herbaceous pioneer species occurring after cutting showed higher field photo synthetic capacity than evergreen climax trees and shrubs. By contrast, net photosynthesis of herbaceous species occurring in a persistent stage after fire, was in the same range as that of climax trees. This evidence suggests that carbon-gaining appears to be partly related to the dynamic stage of succession and not solely to the growth form.  相似文献   
23.
Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.  相似文献   
24.
Obesity causes serious medical complications and impairs quality of life. Moreover, in older persons, obesity can exacerbate the age‐related decline in physical function and lead to frailty. However, appropriate treatment for obesity in older persons is controversial because of the reduction in relative health risks associated with increasing body mass index and the concern that weight loss could have potential harmful effects in the older population. This joint position statement from the American Society for Nutrition and NAASO, The Obesity Society reviews the clinical issues related to obesity in older persons and provides health professionals with appropriate weight‐management guidelines for obese older patients. The current data show that weight‐loss therapy improves physical function, quality of life, and the medical complications associated with obesity in older persons. Therefore, weight‐loss therapy that minimizes muscle and bone losses is recommended for older persons who are obese and who have functional impairments or medical complications that can benefit from weight loss.  相似文献   
25.
Rice straw decomposition in rice-field soil   总被引:1,自引:0,他引:1  
Rice straw, buried in a rice-field during the dry season decomposed at a rate of 0.0075 day-1. Seventy five percent of the biomass, 70 percent carbon, 50 percent nitrogen and 30 percent phosphorus remained after 139 days of decomposition. Rice straw decomposition furnished 33% N and 8% P of the total nitrogen and phosphorus provided by man.  相似文献   
26.
27.
28.
29.
30.
In producing power, humans move the nutrients nitrogen (N) and phosphorus (P) from their long‐term geological and biological stocks and release or emit them in soil, water, and the atmosphere. In Finland, peat combustion is an important driver of N and P fluxes from the environment to human economy. The flows of N and P in the Finnish energy system were quantified with partial substance flow analysis, and the driving forces of emissions of nitrogen oxides (NOx) were analyzed using the ImPACT model. In the year 2000 in Finland, 140,000 tonnes of nitrogen entered the energy system, mainly in peat and hard coal. Combustion released an estimated 66,000 tonnes of N as nitrogen oxides (NOx) and nitrous oxides (N2O) and another 74,000 tonnes as elemental N2. Most of the emissions were borne in traffic. At the same time, 6,000 tonnes of P was estimated to enter the Finnish energy system, mostly in peat and wood. Ash was mainly used in earth construction and disposed in landfills; thus negligible levels of P were recycled back to nature. During the twentieth century, fuel‐borne input of N increased 20‐fold, and of P 8‐fold. In 1900–1950, the increasing use of hard coal slowly boosted N input, whereas wood fuels were the main carrier of P. Since 1970, the fluxes have been on the rise. NOx emissions leveled off in the 1980s, though, and then declined in conjunction with improvements in combustion technologies such as NOx removal (de‐NOx) technologies in energy production and catalytic converters in cars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号