首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14447篇
  免费   1439篇
  国内免费   2552篇
  2024年   47篇
  2023年   263篇
  2022年   275篇
  2021年   427篇
  2020年   537篇
  2019年   625篇
  2018年   595篇
  2017年   576篇
  2016年   638篇
  2015年   599篇
  2014年   719篇
  2013年   988篇
  2012年   657篇
  2011年   703篇
  2010年   578篇
  2009年   664篇
  2008年   756篇
  2007年   794篇
  2006年   718篇
  2005年   723篇
  2004年   517篇
  2003年   551篇
  2002年   457篇
  2001年   437篇
  2000年   368篇
  1999年   369篇
  1998年   347篇
  1997年   285篇
  1996年   306篇
  1995年   262篇
  1994年   243篇
  1993年   273篇
  1992年   241篇
  1991年   217篇
  1990年   206篇
  1989年   209篇
  1988年   203篇
  1987年   153篇
  1986年   131篇
  1985年   137篇
  1984年   146篇
  1983年   66篇
  1982年   91篇
  1981年   65篇
  1980年   75篇
  1979年   59篇
  1978年   48篇
  1977年   21篇
  1976年   24篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
131.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   
132.
The morphological development and N uptake patterns of spring barley (Hordeum vulgare L.) genotypes of Northern European (Nordic) and Pacific Northwest US (PNW) origin were compared under two diurnally fluctuating root temperature regimes in solution culture. The two regimes, 15/5°C and 9/5°C day maximum/night minimum temperatures, simulated soil temperature differences between tilled vs. heavy-residue, no-till conditions, respectively, observed during early spring in eastern Washington. Previous field experiments indicated that some of the Nordic genotypes accumulated more N and dry matter than the PNW cultivars during early spring under no-till conditions. The objective of this experiment was to determined whether these differences 1) are dependent on the temperature of the rooting environment, and 2) are correlated with genotypic differences in NH4 + and NO3 uptake. Overall, shoot N and dry matter accumulation was reduced by 40% due to lower root temperatures during illumination. Leaf emergence was slowed by 14 to 22%, and tiller production was also inhibited. All genotypes absorbed more ammonium than nitrate from equimolar solutions, and the proportion of total N absorbed as NH4 + was slightly higher in the 9/5°C than the 15/5°C regime. A Finnish genotype, HJA80201, accumulated significantly more shoot N than the PNW cultivars, Clark and Steptoe, and also more than a Swedish cultivar, Pernilla, in the 9/5°C regime. In the 15/5°C regime Steptoe did not differ in shoot N from the Nordic genotypes, while Clark remained significantly lower. These differences were not correlated to relative propensity for N form. Root lengths of the Nordic genotypes were significantly greater than the PNW genotypes grown under the 9/5°C regime, while the root lengths in the warmer root temperture regime were not significantly different among genotypes. Higher root elongation rates under low soil temperature conditions may be an inherent adaptive mechanism of the Nordic genotypes. Overall, the data indicate that lower maximum daytime temperatures of the soil surface layer likely account for a significant portion of the growth reductions and lower N uptake observed in no-till systems.  相似文献   
133.
Effects of different concentrations of active ingredient of the herbicide pyramin on metabolic activities of Fusarium solani and Sclerotium rolfsii were examined. High concentrations of this herbicide (1000 and 2000 g mL-1 for F. solani and 100 and 200 g mL-1 for S. rolfsii) had inhibitory effects on the metabolic activities of both fungi. These were demonstrated by significant decreases in growth, and increases in rates of CO2 evolved, O2 consumed and keto acids produced. These were accompanied by increased rates of sugar, nitrate and inorganic phosphorus absorption as well as lowered rates of synthesis of carbohydrates and insoluble nitrogenous (including protein) and phosphorus (including RNA-P and DNA-P) compounds. In addition, rates of excretion of both nitrogen and phosphorus fractions by the mycelial mats were increased.A concentration of 25 g mL-1 exerted little or no effect on the metabolic activities of these fungi, although S. rolfsii was somewhat sensitive to this concentration.  相似文献   
134.
Two Rhizobium strains (WU1001 and WU1008) were isolated from nodules of Acacia redolens growing in saline areas of south-west Australia, and two strains selected from the University of Western Australia's culture collection (WU429 isolated from A. saligna and WU433 from A. cyclops). The growth of each in buffered, yeast extract mannitol broth culture was largely unaffected by salt up to 300 mM NaCl. A slight increase in lag time occurred at concentrations of 120 mM NaCl and above, but cell number at the static phase was not affected. Each of the four Rhizobium strains tested accumulated Na+ but showed decreasing levels of sugar with increasing salt in the external medium. Amino acid levels also increased, in some cases by more than tenfold. However, the relative proportion of each remained fairly constant in the bacteria, irrespective of salt treatment. Only trace quantities of proline were detected and there was no increase in this amino acid with salt. Acidic amino acids (glutamate and aspartate) remained as a constant proportion.Rhizobium strains WU429, WU1001 and WU1008 produced effective nodules on both A. cyclops and A. redolens grown in sand with up to 80 mM NaCl (added in nutrient solutions free of nitrogen). Strain WU433 was highly infective on both Acacia species tested at low salt concentrations (2–40 mM NaCl), but infection was sensitive to salt levels at 120 mM NaCl and above. Nodules formed with strain WU433 were, however, ineffective on both A. redolens and on A. cyclops and showed nil or negligible rates of acetylene reduction at all salt concentrations. Strains WU429, WU1001 and WU1008 in combination with a highly salt-tolerant provenance of A. redolens formed symbioses which did not vary significantly in nodule number and mass, specific nodule activity or total N content irrespective of salt level up to 160 mM NaCl. On a more salt sensitive provenance of A. redolens and on A. cyclops the infectivity and effectivity of the Rhizobium strains tested usually decreased as the external salt concentration increased. These data are interpreted to indicate that tolerance of the legume host was the most important factor determining the success of compatible Rhizobium strains in forming effective symbioses under conditions of high soil salinity.  相似文献   
135.
The effect of copper on the uptake of nitrogen and the tissue contents of inorganic nitrogen, amino acids and proteins were studied in cooper-sensitive Silene vulgaris (Moench) Garcke, grown at different nitrogen sources (NH4 + or NO3 -). All the toxic copper levels tested, i.e. 4, 8, 16 M Cu2+, strongly inhibited the uptake of nitrogen, especially of NO3 -, and decreased the content of NO3 -, amino acids and proteins. Especially at 4 and 8 M Cu2+, NH4 + accumulated in the plants, suggesting that the conversion of NH4 - into amino acids was inhibited.  相似文献   
136.
The effects of inoculum level and lime-pelleting were studied in an acid soil with respect to the nodulation and growth of lucerne (Medicago sativa cv Resis) and the population dynamics of Rhizobium meliloti. In small root-boxes (rhizotrons), the in-situ survival of inoculated rhizobia was studied in the micro-environment around the seed for a period of 12 days after sowing. During the initial 24 hours, a strong increase in rhizobial numbers was measured, concomitantly with the development of roots. As a result of lime-pelleting, rhizobial numbers were higher only at 3 days after sowing (P<0.05). Later, this difference diminished steadily. Addition of lime did not increase the adhesion of the rhizobia to the seedling tap root. Plant responses to inoculation were studied in pots. To obtain optimal nodulation, the soil had to be neutralized around the seed with lime and at least 105 cells of R. meliloti were required. With more than 105 rhizobia per seed, lime-pelleting increased the number of crown-nodulated seedlings from 24% to 77%. Higher numbers of rhizobia could not compensate the effect of lime. A strong correlation was found between crown nodulation, nitrogen content and dry weight of the shoots.  相似文献   
137.
In non-legumes associative nitrogen-fixing system, several genera of rhizobacteria have been reported. The object of this paper is to summarize the current understanding of how rhizobacteria adhere to the root surface of non-legumes especially rice and other cereal crops. Evidence for involvement of rice lectin in adhesion will be reviewed. An emphasis will be placed on theKlebsiella R15 ammonium assimilation system in free-living state and in associative state with rice seedlings. Nitrogenase and glutamine synthetase (GS) activities of associativeKlebsiella increased significantly in the rhizosphere of rice comparing to the free-living state. In rice, the soluble form of GS specific activity appear to be slightly lower than in rice root in the absence of bacteria. These results suggest that nitrogen-fixing activity has been enhanced during association. The dinitrogen fixed should be changed to amino acids via GS-GOGAT pathway in bacteria. Transfer of fixed nitrogen and assimilation in the rice plant is the problem that needs to be solved in order to improve the efficiency of associative nitrogen fixation.  相似文献   
138.
Denitrification losses from soils under barley and grass ley crops were simulated. The model, which includes the major processes determining inputs, transformations and outputs of nitrogen in arable soils, represents a scale compatible with information generally available in agricultural field research. The denitrification part of the model includes a field potential denitrification rate and functions for the effect of soil aeration status, soil temperature and soil nitrate content. Easily metabolizable organic matter is assumed not to limit denitrification. Simulated values were compared with denitrification measurements made during two growing seasons in the barley and grass ley treatments of a field experiment in central Sweden.Calibration revealed that the optimal parameter values describing the effect of soil aeration on denitrification rates were similar for both treatments. The response function derived agreed well with two data sets found in the literature. The potential denitrification rate constant, derived in the simulations, was higher for grass ley than for barley, which was consistent with the differences in overall rates of carbon and nitrogen turnover found between treatments.The simulated mean denitrification rates for the two seasons were within 20% of the mean of the measured values. However, simulated denitrification showed less temporal variability and a less skewed frequency distribution than measured denitrification. Some of the measured denitrification events not explained by the model could have been due to the stimulating effects of soil drying/wetting and freezing/thawing on microbial activity.  相似文献   
139.
Small-scale spatial heterogeneity of soil organic matter (SOM) associated with patterns of plant cover can strongly influence population and ecosystem dynamics in dry regions but is not well characterized for semiarid grasslands. We evaluated differences in plant and soil N and C between soil from under individual grass plants and from small openings in shortgrass steppe. In samples from 0 to 5 cm depth, root biomass, root N, total and mineralizable soil N, total and respirable organic C, C:N ratio, fraction of organic C respired, and ratio of respiration to N mineralization were significantly greater for soil under plants than soil from openings. These differences, which were consistent for two sites with contrasting soil textures, indicate strong differentiation of surface soil at the scale of individual plants, with relative enrichment of soil under plants in total and active SOM. Between-microsite differences were substantial relative to previously reported differences associated with landscape position and grazing intensity in shortgrass steppe. We conclude that microscale heterogeneity in shortgrass steppe deserves attention in investigation of controls on ecosystem and population processes and when sampling to estimate properties at plot or site scales.  相似文献   
140.
Abstract. Studies of the isoprene emission rate in response to changes in photon-flux density and CO2 partial pressure were conducted using a recently developed on-line isoprene analyser combined with a gas exchange system and chlorophyll fluorometer. Upon darkening, the isoprene emission rate from leaves of aspen ( Populus tremuloides Michaux.) began to decline immediately, demonstrating that the internal pool of isoprene, or its precursors, is small and that the instantaneous emission rate is tightly coupled to the rate of synthesis. A post-illumination burst of isoprene was observed within 5 min after darkening and lasted for 15–20 min in four isoprene-emitting species that were examined. In leaves of eucalyptus ( Eucalyptus globulus Labill.), the magnitude of the post-illumination burst was dependent on the photon-flux density that existed before darkening, but not on ambient CO2 partial pressure. The dependence of the post-illumination burst on photon-flux density paralleled that for the steady-state rate of isoprene emission. A step-wise increase in intercellular CO2 partial pressure from 24.5 to 60 Pa resulted in an immediate decrease in isoprene emission rate and non-photochemical fluorescence quenching, but an increase in CO2 assimilation rate. Given the several recent studies that link isoprene emission to chloroplastic processes, the results of this study indicate that the linkage is not dependent on the rate of CO2 flux through the reductive pentose phosphate pathway, but rather on more complex relationships involving metabolites not appreciably influenced by CO2 partial pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号