首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2786篇
  免费   119篇
  国内免费   166篇
  2023年   23篇
  2022年   31篇
  2021年   47篇
  2020年   54篇
  2019年   62篇
  2018年   67篇
  2017年   43篇
  2016年   64篇
  2015年   62篇
  2014年   96篇
  2013年   143篇
  2012年   68篇
  2011年   103篇
  2010年   62篇
  2009年   121篇
  2008年   113篇
  2007年   121篇
  2006年   122篇
  2005年   139篇
  2004年   94篇
  2003年   109篇
  2002年   109篇
  2001年   77篇
  2000年   85篇
  1999年   61篇
  1998年   79篇
  1997年   65篇
  1996年   67篇
  1995年   64篇
  1994年   73篇
  1993年   79篇
  1992年   64篇
  1991年   47篇
  1990年   67篇
  1989年   54篇
  1988年   53篇
  1987年   45篇
  1986年   38篇
  1985年   34篇
  1984年   40篇
  1983年   22篇
  1982年   18篇
  1981年   23篇
  1980年   17篇
  1979年   5篇
  1978年   13篇
  1977年   9篇
  1976年   6篇
  1975年   6篇
  1974年   3篇
排序方式: 共有3071条查询结果,搜索用时 46 毫秒
41.
Nitrate depletion in the riparian zone of a small woodland stream   总被引:1,自引:0,他引:1  
Field enrichments with nitrate in two spring-fed drainage lines within the riparian zone of a small woodland stream near Toronto, Ontario showed an absence of nitrate depletion. Laboratory experiments with riparian substrates overlain with nitrate enriched solutions revealed a loss of only 5–8% of the nitrate during 48 h incubation at 12°C. However, 22–24% of the initial nitrate was depleted between 24 and 48 h when a second set of substrate cores was incubated at 20°C. Short-term (3 h) incubations of fresh substrates amended with acetylene were used to estimate in situ denitrification potentials which varied from 0.05–3.19 g N g–1 d–1 for organic and sandy sediments. Denitrification potentials were highly correlated with initial nitrate content of substrate samples implying that low nitrate levels in ground water and riparian substrates may be an important factor in controlling denitrification rates. The efficiency of nitrate removal in spring-fed drainage lines is also limited by short water residence times of < 1 h within the riparian zone. These data suggest that routes of ground water movement and substrate characteristics are important in determining nitrate depletion within stream riparian areas.  相似文献   
42.
Legumes of the Phaseoleae ( Glycine max L. Merr., Phaseolus coccineus L., P. vulgaris L., Vigna radiata L. Wilczek and V. unguiculata L. Walp.), when grown on 10 m M nitrate, had a low in vitro nitrate reductase (NR) activity in the root compared to the shoot (<15%). In legumes of the Vicieae ( Cicer aerietinum L., Pisum sativum L. and Vicia faba L.), Genisteae ( Lupinus albus L.) and Trifolieae ( Medicago sativa L. and M. truncatula Gaertn.), 30–60% of their total NR activity was in the root. The Phaseoleae had a higher nitrate content in the shoot. Decreasing the nitrate supply increased the relative proportion of NR activity in the root of garden pea ( Pisum sativum ) and wheat but did not alter the predominantly leaf-based assimilation of nitrate in Phaseolus vulgaris. When in vitro NR activity of the pea shoot was compared with the in vivo NR activity and the rate of accumulation of reduced N by this tissue, similar values were obtained. In vitro NR activity of the wheat shoot was 5 times its in vivo NR activity and 12 times its rate of accumulation of reduced N.  相似文献   
43.
Summary A pot experiment with lettuce involving three N forms each at six application levels, showed that lettuce can be grown satisfactorily with a very low nitrate content when supplied with ammonium sulphate and a nitrification inhibitor. For plants growing on nitrate N, the optimum midrib sap nitrate concentration as maturity approached was about 1400 mg/1 NO3-N. Large losses of mineral N were observed from the peat medium, even in the absence of plants. A relationship is presented which would enable a lettuce grower to estimate whole-shoot nitrate concentration from a quick test of midrib sapi.e. NO3-N (mg/kg in fresh shoot) =0.14×NO3-N (mg/l in sap). Tipburn was worst at intermediate levels of applied N, and was less serious with pure ammonium nutrition than with nitrate.  相似文献   
44.
Abstract Chenopodium album L. plants, grown under controlled environmental conditions on different levels of soil nitrate, produced seeds with proportionately different NO?3 contents. Regardless of the endogenous NO?3 content, few seeds germinated in water or upon treatment with KNO3. Ethylene promoted germination, and the extent of germination was positively correlated with the endogenous seed NO?3 content. Combined application of ethylene and KNO3 in the dark had a synergistic effect on NO?3 -deficient seed. The synergism between ethylene and KNO3 was attributable to the NO?3 moiety of the nitrate salt. Ethylene and light showed moderate synergism in seeds with low or high endogenous nitrate. Addition of nitrate, however, masked the interaction between ethylene and light. Gibberellic acid4+7 (GA4+7) or red light, each alone or combined with KNO3, had little effect on germination. When applied together in the dark, ethylene and GA4+7 synergistically enhanced the germination of NO?3-deficient seed. The combined effects of the two hormones on this seed were further enhanced by the addition of KNO3. There was no synergism between ethylene and GA4+7 in NO?3-rich seed. These interactions among GA4+7, ethylene and KNO3 were not affected by light. The results confirm and further elaborate our earlier finding that the sensitivity of C. album seeds to ethylene may depend on nitrate availability.  相似文献   
45.
Abstract Growth-chamber cultivated Raphanus plants accumulate nitrate during their vegetative growth. After 25 days of growth at a constant supply to the roots of 1 mol m?3 (NO?3) in a balanced nutrient solution, the oldest leaves (eight-leaf stage) accumulated 2.5% NO?3-nitrogen (NO3-N) in their lamina, and almost 5% NO3-N in their petioles on a dry weight basis. This is equivalent to approximately 190 and 400 mol?3 m?3 concentration of NO?3 in the lamina and the petiole, respectively, as calculated on a total tissue water content basis. Measurements were made of root NO?3 uptake, NO?3 fluxes in the xylem, nitrate uptake by the mesophyll cells, and nitrate reduction as measured by an in vivo test. NO?3 uptake by roots and mesophyll cells was greater in the light than in the dark. The NO?3 concentration in the xylem fluid was constant with leaf age, but showed a distinct daily variation as a result of the independent fluxes of root uptake, transpiration and mesophyll uptake. NO?3 was reduced in the leaf at a higher rate in the light than in the dark. The reduction was inhibited at the high concentrations calculated to exist in the mesophyll vacuoles, but reduction continued at a low rate, even when there was no supply from the incubation medium. Sixty-four per cent of the NO?3 influx was turned into organic nitrogen, with the remaining NO?3 accumulating in both the light and the dark.  相似文献   
46.
The photosynthetic performance and nitrogen utilization of Lemna gibba L. G3 adapted to limited nitrogen supply was studied. The plants were adapted to two levels of nitrogen limitation where the nitrogen addition rates were calculated to sustain relative growth rates (RGR) of 0.15 day?1 and 0.25 day?1, respectively. The photosynthetic performance of these cultures was compared to nitrogen-sufficient cultures with an average RGR of 0.32 day?1. Plants transferred from nitrogen-sufficient conditions attained RGR values corresponding to the nitrogen addition rates after 6 to 10 days. Light-saturated net photosynthesis declined during adaptation according to the drop in growth rate, and a concomitant decrease in the respiration rate was recorded. The efficiency of net photosynthesis on a dry weight basis increased with increased nitrogen supply, whereas it was the same in all cultures when expressed on a chlorophyll basis. The light compensation point was unaffected by the nitrogen regime. Limited nitrogen supply resulted in an increased proportion of dry matter in the roots, which led to decreased leaf area ratios. The net assimilation rates also decreased, but not to the same extent as the leaf area ratios. Growth-limiting amounts of nitrogen were added to the cultures once daily, and the net influx of N was higher than the requirement for N, also in adapted cultures with a steady growth rate. This resulted in transient, periodic fluctuations in the NO3?, NH4+ and amino acid pools. Also the rates of NO3? reduction and NH4+ assimilation fluctuated as did the amino acid assimilation which paralleled NH4+ assimilation. The role of flux rates over the plasmalemma and tonoplast for control of nitrogen assimilation rates are discussed.  相似文献   
47.
Diurnal variations of in vitro and in vivo (intact tissue assay) nitrate reductase (EC 1.6.6.1) activity and stability were examined in leaves of wheat ( Triticum aestivum L. cv. Runar), oat ( Avcna saliva L. cv. Mustang) and barley ( Hordeum vulgure L. cv. Agneta and cv. Gunillu). Nitrate reductase activity was generally higher for wheat than for oat and barley. However, the diurnal variations of nitrate reductase activity and stability were principally the same for all species, e.g. the high activity during the photoperiod was associated with low stability. All species showed a rapid (30-60 min) increase in the in vitro and in vivo activity when the light was switched on. When light was switched off the in vitro activity decreased rapidly whereas decrease in in vivo activity was slower. These experiments support the hypothesis that an activation/ deactivation mechanism is involved in the regulation of diurnal variations in nitrate reductase activity. Red light enhanced nitrate reductase activity in etiolated wheat and barley leaves. In green leaves, however, the daily increase in nitrate reductase activity was not induced by a brief red light treatment. Indications of different regulation mechanisms for the diurnal variations of nitrate reductase activity among the cereals were not found.  相似文献   
48.
Measurements of uptake rates, intracellular nitrogen pools, and other key intracellular constituents were made during exponential growth in Skeletonema costatum (Grev.) Cleve under varying pH levels. An understanding of the overall effects of extracellular pH on the above mentioned cellular parameters is crucial in order to ascertain the degree to which pH must be regulated and monitored in laboratory experiments with marine phytoplankton.It was found that uptake rates and intracellular pool sizes of NO?3 were directly influenced by the extracellular pH level, whereas, other cellular compounds remained relatively unchanged. Therefore, nitrogen uptake and intracellular nitrogen storage are dependent on key H+ and OH? ion transport mechanisms that are associated with phytoplankton metabolism. These findings reiterate the fact that investigators examining nitrogen uptake and assimilatory mechanisms in marine phytoplankton must be conscious of cellular H + and OH? fluxes that contribute to intracellular pH regulation and changes in extracellular pH levels, both of which interact to affect phytoplankton metabolic processes.  相似文献   
49.
The general hypothesis that morphological, physiological, and ecological adaptations of macro algal functional-form groups can be related to the level of disturbance encountered in a natural environment was examined. Two articulated calcareous coralline algae (Amphiroa van-bosseae Lemoine, 24% cover and Corallina frondescens Post. & Rupr. 20%) and one non-articulated coralline alga (Lithophyllum sp., 16%), all late-successional predation-tolerant strategists, comprise most of the community cover on stable bedrock substrata at Punta Las Cuevitas, Sonora, Mexico. Conversely, Ulva rigida C. ag. (26% cover) and a ralfsioid crust (23%), shows to be early-successional opportunistic strategists, cover more of the disturbed boulder habitat. Porolithon sonorense Daws., a stress-tolerant strategist, is uniquely abundant on both substratum types (13% cover on boulders, 10% on bedrock). The sheet-like and filamentous algae, prevalent in the temporally unstable habitat, generally show greater productivity (>2×) than the thicker and calcareous forms conspicuous in the more constant environment. It appears that selection for delicate thalli with high productivities, as well as selection for tougher morphologies having lower photosynthetic rates due to greater proportions of structural tissues, are widespread, divergent evolutionary forces among marine algae. Experiments with captive sea urchins (Echinometra vanbrunti Agassiz), in conjunction with fish-preference data published for some of the same algae studied here, offer strong support for the functional-form model. Parrotfishes, rudderfishes, surgeonfishes, damselfishes and E. vanbrunti, in the Gulf of California, preferentially feed on delicate, early-successional, sheet-like, and filamentous algae, while rejecting or ignoring the more structured, late-successional and calcareous algae. There is no significant (P > 0.05) gradation in calorific content between the first four of the six functional groups (i.e., Sheet-, Filamentous-, Coarsely Branched- and Thick Leathery-Groups), but the mean value for these fleshy forms (2.6 kcal · g ash-free dry wt?1) is significantly greater than that for the last two groups (0.3 kcal, Jointed Calcareous- and Crustose-Groups). The approach used in this study demonstrates a realistic technique for predicting macrophyte community composition from knowledge of the disturbance levels in a given habitat or the reverse. The form group-disturbance relationship has important implications for future biological monitoring of rocky-inter-tidal and subtidal systems.  相似文献   
50.
乙醇酸、乙醛酸和草酸能明显促进烟草(Nicotiana rustica)叶片在黑暗中的硝酸还原,光呼吸抑制剂a-羟基吡啶甲烷磺酸能消除前二者的促进作用而不能完全消除草酸的作用。草酸+NAD~+能显著促进离体的硝酸还原。烟叶提取液加入草酸和NAD~+后生成NADH和CO_2认为活体内由乙醛酸氧化生成的草酸是经脱氢生成NADH供硝酸还原之用。未能证明在烟叶内存在乙醇酸脱氨酶,因此排除由乙醇酸直接脱氢以还原硝酸的可能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号