首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   31篇
  230篇
  2024年   1篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   7篇
  2019年   10篇
  2018年   3篇
  2017年   10篇
  2016年   15篇
  2015年   11篇
  2014年   18篇
  2013年   6篇
  2012年   7篇
  2011年   4篇
  2010年   5篇
  2009年   12篇
  2008年   11篇
  2007年   15篇
  2006年   9篇
  2005年   6篇
  2004年   5篇
  2003年   8篇
  2002年   9篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1981年   1篇
  1974年   2篇
排序方式: 共有230条查询结果,搜索用时 0 毫秒
81.
Vertebrates' diets profoundly influence the composition of symbiotic gut microbial communities. Studies documenting diet‐microbiota associations typically focus on univariate or categorical diet variables. However, in nature individuals often consume diverse combinations of foods. If diet components act independently, each providing distinct microbial colonists or nutrients, we expect a positive relationship between diet diversity and microbial diversity. We tested this prediction within each of two fish species (stickleback and perch), in which individuals vary in their propensity to eat littoral or pelagic invertebrates or mixtures of both prey. Unexpectedly, in most cases individuals with more generalised diets had less diverse microbiota than dietary specialists, in both natural and laboratory populations. This negative association between diet diversity and microbial diversity was small but significant, and most apparent after accounting for complex interactions between sex, size and diet. Our results suggest that multiple diet components can interact non‐additively to influence gut microbial diversity.  相似文献   
82.

Background

The threespine stickleback (Gasterosteus aculeatus) has become an important model species for studying both contemporary and parallel evolution. In particular, differential adaptation to freshwater and marine environments has led to high differentiation between freshwater and marine stickleback populations at the phenotypic trait of lateral plate morphology and the underlying candidate gene Ectodysplacin (EDA). Many studies have focused on this trait and candidate gene, although other genes involved in marine-freshwater adaptation may be equally important. In order to develop a resource for rapid and cost efficient analysis of genetic divergence between freshwater and marine sticklebacks, we generated a low-density SNP (Single Nucleotide Polymorphism) array encompassing markers of chromosome regions under putative directional selection, along with neutral markers for background.

Results

RAD (Restriction site Associated DNA) sequencing of sixty individuals representing two freshwater and one marine population led to the identification of 33,993 SNP markers. Ninety-six of these were chosen for the low-density SNP array, among which 70 represented SNPs under putatively directional selection in freshwater vs. marine environments, whereas 26 SNPs were assumed to be neutral. Annotation of these regions revealed several genes that are candidates for affecting stickleback phenotypic variation, some of which have been observed in previous studies whereas others are new.

Conclusions

We have developed a cost-efficient low-density SNP array that allows for rapid screening of polymorphisms in threespine stickleback. The array provides a valuable tool for analyzing adaptive divergence between freshwater and marine stickleback populations beyond the well-established candidate gene Ectodysplacin (EDA).

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-867) contains supplementary material, which is available to authorized users.  相似文献   
83.
Animals maintain complex microbial communities within their guts that fill important roles in the health and development of the host. To what degree a host's genetic background influences the establishment and maintenance of its gut microbial communities is still an open question. We know from studies in mice and humans that external factors, such as diet and environmental sources of microbes, and host immune factors play an important role in shaping the microbial communities (Costello et al. 2012 ). In this issue of Molecular Ecology, Bolnick et al. ( 2014a ) sample the gut microbial community from 150 genetically diverse stickleback isolated from a single lake to provide evidence that another part of the adaptive immune response, the major histocompatibility complex class II (MHCII) receptors of antigen‐presenting cells, may play a role in shaping the gut microbiota of the threespine stickleback, Gasterosteus aculeatus (Bolnick et al. 2014a ). Bolnick et al. ( 2014a ) provide insight into natural, interindividual variation in the diversity of both stickleback MHCII alleles and their gut microbial communities and correlate changes in the diversity of MHCII receptor alleles with changes in the microbiota.  相似文献   
84.
Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host‐specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among‐individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next‐generation sequencing to genotype the sticklebacks’ gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC‐microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex‐dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis‐associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite‐driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa.  相似文献   
85.
Natural selection has almost certainly shaped many evolutionary trajectories documented in fossil lineages, but it has proven difficult to demonstrate this claim by analyzing sequences of evolutionary changes. In a recently published and particularly promising test case, an evolutionary time series of populations displaying armor reduction in a fossil stickleback lineage could not be consistently distinguished from a null model of neutral drift, despite excellent temporal resolution and an abundance of indirect evidence implicating natural selection. Here, we revisit this case study, applying analyses that differ from standard approaches in that: (1) we do not treat genetic drift as a null model, and instead assess neutral and adaptive explanations on equal footing using the Akaike Information Criterion; and (2) rather than constant directional selection, the adaptive scenario we consider is that of a population ascending a peak on the adaptive landscape, modeled as an Orstein-Uhlenbeck process. For all three skeletal features measured in the stickleback lineage, the adaptive model decisively outperforms neutral evolution, supporting a role for natural selection in the evolution of these traits. These results demonstrate that, at least under favorable circumstances, it is possible to infer in fossil lineages the relationship between evolutionary change and features of the adaptive landscape.  相似文献   
86.
The life history in a brackish water type of the ninespine stickleback, Pungitius pungitius, was studied by examining the strontium (Sr) and calcium (Ca) concentrations in the otoliths. The fluctuating patterns of Sr/Ca ratios along the life history transect in the otoliths varied widely among fish in spite of their identification as brackish water type as estimated by morphological characteristics. More than 70% fish showed the intermediate otolith Sr/Ca ratio throughout, averaging 5.23–7.71 × 10−3. Besides this brackish water resident life history type of P. pungitius, other sticklebacks had anadromous (25%) and freshwater amphidromous (2.5%) life history types. These findings clearly indicate that the migration of the ninespine stickleback between fresh and sea waters is obligatory but facultative having an ability to utilize the full range of salinity in its life history.  相似文献   
87.
The pairwise sequentially Markovian coalescent (PSMC) method uses the genome sequence of a single individual to estimate demographic history covering a time span of thousands of generations. Although originally designed for whole‐genome data, we here use simulations to investigate its applicability to reference genome‐aligned restriction site associated DNA (RAD) data. We find that RAD data can potentially be used for PSMC analysis, but at present with limitations. The key factor is the proportion (p) of the genome that the RAD data covers. In our simulations, a proportion of 10% can still retain a substantial amount of coalescent information, whereas for 1% estimation becomes unreliable. The performance depends strongly on mutation rate (μ) and recombination rate (r) and is proportional to μ*p/r. When the value of this term is low, increasing the amount of data and number of iterations helps restoring the power of the estimation. We subsequently analyse one whole‐genome‐sequenced and 17 RAD‐sequenced three‐spined sticklebacks (Gasterosteus aculeatus) from a lake in Greenland. The whole‐genome sequence suggests a relatively recent expansion and decline within ca. 4000–40 000 generations ago, possibly reflecting postglacial expansion and founding of the lake population. RAD data, where chromosomes from 10 individuals are combined, identify a similar pattern. Our study provides guidance about the use of PSMC analysis and suggests measures that can improve its utility for RAD data. Finally, the study shows that RAD loci in general contain coalescent information that can be used for developing more targeted methods.  相似文献   
88.
Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three‐spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three‐spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation.  相似文献   
89.
Lateral plate evolution in the threespine stickleback: getting nowhere fast   总被引:3,自引:1,他引:3  
Bell  Michael A. 《Genetica》2001,(1):445-461
Gasterosteus aculeatus is a small Holarctic fish with marine, anadromous, and freshwater populations. Marine and anadromous populations apparently have changed little in the past 10 million years and exhibit limited geographical variation. In contrast, freshwater isolates have been founded repeatedly by marine and anadromous populations, and post-glacial isolates have undergone extraordinary adaptive radiation. Stickleback traits that have diversified during post-glacial radiation, including the lateral plates (LP), can evolve substantially within decades after colonization of fresh water or when the environment (particularly predation regime) changes. Although highly divergent freshwater isolates of G. aculeatus have existed for at least 10 million years, they have rarely experienced sustained evolutionary divergence leading to formation of widespread, phenotypically distinct species. The paradox of rapid LP evolution without sustained divergence has resulted from selective extinction of highly divergent populations, because they are specialized for conditions in small, isolated habitats that tend to dry up within limited periods. Biological species of G. aculeatus may also evolve within decades, and are also prone to extinction because they are endemic to and specialized for small, ephemeral habitats. The high rate of evolution observed in contemporary threespine stickleback populations may not be unique to this species complex and has important implications for use of post-glacial populations in comparative studies, speciation rate, and discrimination of sympatric and allopatric speciation.  相似文献   
90.
Divergence in phenotypic traits is facilitated by a combination of natural selection, phenotypic plasticity, gene flow, and genetic drift, whereby the role of drift is expected to be particularly important in small and isolated populations. Separating the components of phenotypic divergence is notoriously difficult, particularly for multivariate phenotypes. Here, we assessed phenotypic divergence of threespine stickleback (Gasterosteus aculeatus) across 19 semi‐interconnected ponds within a small geographic region (~7.5 km2) using comparisons of multivariate phenotypic divergence (PST), neutral genetic (FST), and environmental (EST) variation. We found phenotypic divergence across the ponds in a suite of functionally relevant phenotypic traits, including feeding, defense, and swimming traits, and body shape (geometric morphometric). Comparisons of PSTs with FSTs suggest that phenotypic divergence is predominantly driven by neutral processes or stabilizing selection, whereas phenotypic divergence in defensive traits is in accordance with divergent selection. Comparisons of population pairwise PSTs with ESTs suggest that phenotypic divergence in swimming traits is correlated with prey availability, whereas there were no clear associations between phenotypic divergence and environmental difference in the other phenotypic groups. Overall, our results suggest that phenotypic divergence of these small populations at small geographic scales is largely driven by neutral processes (gene flow, drift), although environmental determinants (natural selection or phenotypic plasticity) may play a role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号