首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3596篇
  免费   196篇
  国内免费   100篇
  3892篇
  2024年   8篇
  2023年   53篇
  2022年   75篇
  2021年   148篇
  2020年   95篇
  2019年   119篇
  2018年   91篇
  2017年   67篇
  2016年   97篇
  2015年   120篇
  2014年   173篇
  2013年   201篇
  2012年   144篇
  2011年   156篇
  2010年   138篇
  2009年   153篇
  2008年   211篇
  2007年   171篇
  2006年   163篇
  2005年   155篇
  2004年   154篇
  2003年   140篇
  2002年   125篇
  2001年   108篇
  2000年   67篇
  1999年   84篇
  1998年   69篇
  1997年   56篇
  1996年   55篇
  1995年   70篇
  1994年   58篇
  1993年   63篇
  1992年   46篇
  1991年   34篇
  1990年   34篇
  1989年   25篇
  1988年   19篇
  1987年   17篇
  1986年   20篇
  1985年   22篇
  1984年   15篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   8篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1973年   2篇
排序方式: 共有3892条查询结果,搜索用时 0 毫秒
991.
Electromyographies of the mylohyoid muscle (MH) during the execution of the goal-oriented action “grasping to eat” have been used to determine the time relationship between the opening of the mouth and the beginning of the movement. This has been used to distinguish the behaviour of typical developing (TD) children from that of highly functioning autistic (ASD) individuals. The results of previous studies appeared to provide evidence of a deficit in action chain organization in ASD subjects and prompted the hypothesis of a “broken” mirror neuron system (MNS) for these individuals. Our results show the MH activation timing is not reliable in discriminating between TD and ASD children and the distance between the food and the subject plays a key role on the MH activation timing and cannot be neglected when analysing these type of data. The preliminary investigation on the effects of external perturbations also shows that these might have an effect on the results and further investigations are warranted. It appears that there is not enough evidence to support a link between ASD and a broken mirror network system (MNS), and the experimental results must be carefully interpreted before developing therapeutic or rehabilitative protocols.  相似文献   
992.
Mechanobiology is an emerging scientific area that addresses the critical role of physical cues in directing cell morphology and function. For example, the effect of tissue elasticity on cell function is a major area of mechanobiology research because tissue stiffness modulates with disease, development, and injury. Static tissue-mimicking materials, or materials that cannot alter stiffness once cells are plated, are predominately used to investigate the effects of tissue stiffness on cell functions. While information gathered from static studies is valuable, these studies are not indicative of the dynamic nature of the cellular microenvironment in vivo. To better address the effects of dynamic stiffness on cell function, we developed a DNA-crosslinked polyacrylamide hydrogel system (DNA gels). Unlike other dynamic substrates, DNA gels have the ability to decrease or increase in stiffness after fabrication without stimuli. DNA gels consist of DNA crosslinks that are polymerized into a polyacrylamide backbone. Adding and removing crosslinks via delivery of single-stranded DNA allows temporal, spatial, and reversible control of gel elasticity. We have shown in previous reports that dynamic modulation of DNA gel elasticity influences fibroblast and neuron behavior. In this report and video, we provide a schematic that describes the DNA gel crosslinking mechanisms and step-by-step instructions on the preparation DNA gels.  相似文献   
993.
Pyrethroid modulation of sodium channels is unique in the sense that it is highly dependent on temperature, the potency being augmented by lowering the temperature. To elucidate the mechanisms underlying the negative temperature dependence of pyrethroid action, single sodium channel currents were recorded from cultured rat hippocampal neurons using the inside-out configuration of patch-clamp technique, and the effects of the pyrethroid tetramethrin were compared at 22 and 12°C. Tetramethrin-modified sodium channels opened with short closures and/or transitions to subconductance levels at 22 and 12°C. The time constants of the burst length histograms for tetramethrin-modified channels upon depolarization to −60 mV were 7.69 and 14.46 msec at 22 and 12°C, respectively (Q10= 0.53). Tetramethrin at 10 μm modified 17 and 23% of channels at 22 and 12°C, respectively, indicating that the sensitivity of the sodium channel of rat hippocampal neurons to tetramethrin was almost the same as that of tetrodotoxin-sensitive sodium channels of rat dorsal root ganglion neurons and rat cerebellar Purkinje neurons. The time constants for burst length in tetramethrin-modified sodium channels upon repolarization to −100 mV from −30 mV were 8.26 and 68.80 msec at 22 and 12°C (Q10= 0.12), respectively. The prolongation of tetramethrin-modified whole-cell sodium tail currents upon repolarization at lower temperature was ascribed to a prolongation of opening of each channel. Simple state models were introduced to interpret behaviors of tetramethrin-modified sodium channels. The Q10 values for transition rate constants upon repolarization were extremely large, indicating that temperature had a profound effect on tetramethrin-modified sodium channels. Received: 31 January 2000/Revised: 18 May 2000  相似文献   
994.
张秀妹  高洁  陈春红  涂海军 《遗传》2018,40(12):1066-1074
固有免疫系统是动植物个体应对外来微生物侵入感染时非常重要的抵御防线。秀丽隐杆线虫(Caenorhabditis elegans,简称线虫)作为研究宿主与病原菌之间相互作用的经典模式动物,近年来在神经和免疫之间相互作用的分子与遗传机制等方面的研究取得了长足进展。研究表明,线虫神经元通过释放神经递质与神经多肽(如多巴胺、NLP-20)等,激活相关信号通路途经,参与线虫对病原菌的识别、逃避、调节物理屏障防御能力和激活固有免疫反应,并表达分泌抗菌肽以清除病原菌等的调控进程。本文综述了线虫神经系统调控固有免疫功能机制的最新研究进展,为人们深入了解神经与免疫系统间相互作用的功能分子及其调控机制和揭示人类神经与免疫系统相关疾病的病理机理提供了重要信息。  相似文献   
995.
We used polyclonal antisera recognizing S100, a small acidic protein highly enriched in nervous tissue, to stain sections of embryonic chicken lumbosacral spinal cord and hindlimb. S100 immunoreactivity was detected in developing sensory neurons of the dorsal root ganglia (DRG) and motor neurons of the ventral spinal cord as early as embryonic day (E) 5, and staining persisted through hatching. In contrast, expression of S100 first became apparent in Schwann cells at E13, just before myelination, and was not detected in developing skin or muscle. Since S100β was present in motor and sensory neurons and is known to promote neuronal survival and neurite extension in vitro (Winningham-Major, Staecker, Barger, Coats, and Van Eldik, 1989), we tested the ability of S100 to promote neuron survival in an in ovo survival assay. Addition of S100 to chick embryos in ovo during the period of naturally occurring motor neuron cell death resulted in a significant increase in motor neuron survival, but had no effect on the in vivo survival of sensory neurons in the DRG. The findings that S100 is present in spinal motor neurons and that the addition of S100 enhances the survival of these cells in vivo are consistent with the possibility that S100 may act as a naturally occurring neuron survival factor during development. © 1992 John Wiley & Sons, Inc.  相似文献   
996.
Neuronal differentiation and function require extensive stabilization of the microtubule cytoskeleton. Neurons contain a large proportion of microtubules that resist the cold and depolymerizing drugs and exhibit slow subunit turnover. The origin of this stabilization is unclear. Here we have examined the role of STOP, a calmodulin-regulated protein previously isolated from cold-stable brain microtubules. We find that neuronal cells express increasing levels of STOP and of STOP variants during differentiation. These STOP proteins are associated with a large proportion of microtubules in neuronal cells, and are concentrated on cold-stable, drug-resistant, and long-lived polymers. STOP inhibition abolishes microtubule cold and drug stability in established neurites and impairs neurite formation. Thus, STOP proteins are responsible for microtubule stabilization in neurons, and are apparently required for normal neurite formation.  相似文献   
997.
Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders.  相似文献   
998.
The cGMP sensitivity of cyclic nucleotide-gated (CNG) channels can be modulated by changes in phosphorylation catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases. Previously, we used genistein, a PTK inhibitor, to probe the interaction between PTKs and homomeric channels comprised of alpha subunits (RETalpha) of rod photoreceptor CNG channels expressed in Xenopus oocytes. We showed that in addition to inhibiting phosphorylation, genistein triggers a noncatalytic interaction between PTKs and homomeric RETalpha channels that allosterically inhibits channel gating. Here, we show that native CNG channels from rods, cones, and olfactory receptor neurons also exhibit noncatalytic inhibition induced by genistein, suggesting that in each of these sensory cells, CNG channels are part of a regulatory complex that contains PTKs. Native CNG channels are heteromers, containing beta as well as alpha subunits. To determine the contributions of alpha and beta subunits to genistein inhibition, we compared the effect of genistein on native, homomeric (RETalpha and OLFalpha), and heteromeric (RETalpha+beta, OLFalpha+beta, and OLFalpha+RETbeta) CNG channels. We found that genistein only inhibits channels that contain either the RETalpha or the OLFbeta subunits. This finding, along with other observations about the maximal effect of genistein and the Hill coefficient of genistein inhibition, suggests that the RETalpha and OLFbeta subunits contain binding sites for the PTK, whereas RETbeta and OLFalpha subunits do not.  相似文献   
999.
Tyrosine hydroxylase and Parkinson's disease   总被引:7,自引:0,他引:7  
A consistent neurochemical abnormality in Parkinson's disease (PD) is degeneration of dopaminergic neurons in substantia nigra, leading to a reduction of striatal dopamine (DA) levels. As tyrosine hydroxylase (TH) catalyses the formation ofl-DOPA, the rate-limiting step in the biosynthesis of DA, the disease can be considered as a TH-deficiency syndrome of the striatum. Similarly, some patients with hereditaryl-DOPA-responsive dystonia, a neurological disorder with clinical similarities to PD, have mutations in the TH gene and decreased TH activity and/or stability. Thus, a logical and efficient treatment strategy for PD is based on correcting or bypassing the enzyme deficiency by treatment withl-DOPA, DA agonists, inhibitors of DA metabolism, or brain grafts with cells expressing TH. A direct pathogenetic role of TH has also been suggested, as the enzyme is a source of reactive oxygen species (ROS) in vitro and a target for radical-mediated oxidative injury. Recently, it has been demonstrated thatl-DOPA is effectively oxidized by mammalian TH in vitro, possibly contributing to the cytotoxic effects of DOPA. This enzyme may therefore be involved in the pathogenesis of PD at several different levels, in addition to being a promising candidate for developing new treatments of this disease.  相似文献   
1000.
The effects of nitric oxide (NO) and other cysteine modifying agents were examined on cyclic nucleotide-gated (CNG) cation channels from rat olfactory receptor neurons. The NO compounds, S-nitroso-cysteine (SNC) and 3-morpholino-sydnonomine (SIN-1), did not activate the channels when applied for up to 10 min. The cysteine alkylating agent, N-ethylmaleimide (NEM), and the oxidising agent, dithionitrobensoate (DTNB), were also without agonist efficacy. Neither SNC nor DTNB altered the cAMP sensitivity of the channels. However, 2-min applications of SIN-1, SNC and DTNB inhibited the cAMP-gated current to approximately 50% of the control current level. This inhibition showed no spontaneous reversal for 5 min but was completely reversed by a 2-min exposure to DTT. The presence of cAMP protected the channels against NO-induced inhibition. These results indicate that inhibition is caused by S-nitrosylation of neighboring sulfhydryl groups leading to sulfhydryl bond formation. This reaction is favored in the closed channel state. Since recombinantly expressed rat olfactory α and β CNG channel homomers and α/β heteromers are activated and not inhibited by cysteine modification, the results of this study imply the existence of a novel subunit or tightly bound factor which dominates the effect of cysteine modification in the native channels. As CNG channels provide a pathway for calcum influx, the results may also have important implications for the physiological role of NO in mammalian olfactory receptor neurons. Received: 30 March 1998/Revised: 17 June 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号