首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3596篇
  免费   196篇
  国内免费   100篇
  3892篇
  2024年   8篇
  2023年   53篇
  2022年   75篇
  2021年   148篇
  2020年   95篇
  2019年   119篇
  2018年   91篇
  2017年   67篇
  2016年   97篇
  2015年   120篇
  2014年   173篇
  2013年   201篇
  2012年   144篇
  2011年   156篇
  2010年   138篇
  2009年   153篇
  2008年   211篇
  2007年   171篇
  2006年   163篇
  2005年   155篇
  2004年   154篇
  2003年   140篇
  2002年   125篇
  2001年   108篇
  2000年   67篇
  1999年   84篇
  1998年   69篇
  1997年   56篇
  1996年   55篇
  1995年   70篇
  1994年   58篇
  1993年   63篇
  1992年   46篇
  1991年   34篇
  1990年   34篇
  1989年   25篇
  1988年   19篇
  1987年   17篇
  1986年   20篇
  1985年   22篇
  1984年   15篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   8篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1973年   2篇
排序方式: 共有3892条查询结果,搜索用时 15 毫秒
91.
92.
The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.  相似文献   
93.
Parkinson disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1–2% of the population over the age of 65. Both genetic and environmental factors trigger risks of and protection from PD. However, the molecular mechanism of PD is far from being clear. In this study, we downloaded the gene expression profile of PD from Gene Expression Omnibus and identified differentially expressed genes (DEGs) and dysfunctional pathways in PD patients compared with controls. To further understand how these pathways act together to account for the initiation of PD, we constructed a pathway crosstalk network by calculating the Jaccard index among pathways. A total of 873 DEGs and 16 dysfunctional pathways between PD patients and controls were identified. Through constructing a network of pathways, the relationships among PD pathways were visually presented by their interactions. Our results demonstrate the existence of crosstalk between different pathways in PD pathogenesis. These results not only may explain the causes of PD, but could also open the door to new therapeutic approaches for this disease.  相似文献   
94.
Since numerous diseases affect the central nervous system and it has limited self-repair capability, a great interest in using stem cells as an alternative cell source is generated. Previous reports have shown the differentiation of adipose-derived stem cells in neuron-like cells and it has also been proved that the expression pattern of patterning, proneural, and neural factors, such as Pax6, Mash1, Ngn2, NeuroD1, Tbr2 and Tbr1, regulates and defines adult neurogenesis. Regarding this, we hypothesize that a functional parallelism between adult neurogenesis and neuronal differentiation of human adipose-derived stem cells exists. In this study we differentiate human adipose-derived stem cells into neuron-like cells and analyze the expression pattern of different patterning, proneural, neural and neurotransmitter genes, before and after neuronal differentiation. The neuron-like cells expressed neuronal markers, patterning and proneural factors characteristics of intermediate stages of neuronal differentiation. Thus we demonstrated that it is possible to differentiate adipose-derived stem cells in vitro into immature neuron-like cells and that this process is regulated in a similar way to adult neurogenesis. This may contribute to elucidate molecular mechanisms involved in neuronal differentiation of adult human non-neural cells, in aid of the development of potential therapeutic tools for diseases of the nervous system.  相似文献   
95.
KF核及B(o)tzinger复合体内GABA能神经元向膈神经核的投射   总被引:2,自引:0,他引:2  
Song G  Li Q  Shao FZ 《生理学报》2000,52(2):167-169
实验在6只成年猫上进行。将WGA-HRP微量注入C5膈神经核内,通过逆行追踪及GABA免疫组织化学FITC荧光双重标记方法,研究了脑干内GABA能神经元向膈神经核的投射。结果在脑桥KF核和面神经后核周围区(即Botzinger复合体)观察到GABA-HRP双标神经元。另外,在中缝大核、旁巨细胞外侧核及前庭神经核也观察到双标神经元。本实验结果表明:发自上述脑干神经核团,特别是KF核及Botzinge  相似文献   
96.
-Aminobutyric acid (GABA) and L-glutamic acid (L-Glu) are transmitters of GABAergic and glutamatergic neurons in the enteric interneurons, targeting excitatory or inhibitory GABA receptors or glutamate receptors that modulate gastric motility and mucosal function. GABAergic and glutamatergic neuron immunoreactivity have been found in cholinergic enteric neurons in the stomach. GABA and L-Glu may also subserve hormonal and paracrine signaling. Disruption in gastrointestinal function following perturbation of enteric GABA receptors and glutamate receptors presents potential new target sites for drug development.  相似文献   
97.
Neurological development and functioning of dopamine (DA) neurotransmission is adversely affected by iron deficiency in early life. Iron-deficient rats demonstrate significant elevations in extracellular DA and a reduction in dopamine transporter (DAT) densities in the caudate putamen and nucleus accumbens. To explore possible mechanisms by which cellular iron concentrations control DAT functioning, endogenous DAT-expressing PC12 cells were used to determine the effect of iron chelation on DAT protein and mRNA expression patterns. In addition, we used human DAT (hDAT)-transfected Neuro2a (N2A) cells to examine DAT degradation and trafficking patterns. A 50 microM treatment for 24 h with the iron chelator, desferrioxamine (DFO), significantly decreased dopamine uptake in a dose-dependent manner, with no apparent change in K(m), in both PC12 and N2A cells. Reduced DA uptake was accompanied by concentration- and time-dependent reductions in total DAT protein levels in both cell lines. Exposure to increasing concentrations of DFO did not significantly alter DAT mRNA in either PC12 or N2A cells. However, DAT degradation rates increased three-fivefold in both cell types exposed to 50 microM DFO for 24 h. Biotinylation studies in N2A cells indicate a more dramatic loss of DAT in the membrane fraction, while OptiPrep fractionation experiments revealed an increase in lysosomal DAT with iron chelation. Inhibition of protein kinase C activation with staurosporin prevented the effect of iron chelation on DAT function, suggesting that in vitro iron chelation affects DAT primarily through the effects on trafficking rather than on synthesis.  相似文献   
98.
Methamphetamine (METH) is toxic to dopaminergic (DAergic) terminals in animals and humans. An early event in METH neurotoxicity is an oxidative stress followed by damage to proteins and lipids. The removal of damaged proteins is accomplished by the ubiquitin-proteasome system (UPS) and the impairment of this system can cause neurodegeneration. Whether dysfunction of the UPS contributes to METH toxicity to DAergic terminals has not been determined. The present investigation examined the effects of METH on functions of parkin and proteasome in rat striatal synaptosomes. METH rapidly modified parkin via conjugation with 4-hydroxy-2-nonenal (4-HNE) to decrease parkin levels and decreased the activity of the 26S proteasome while simultaneously increasing chymotrypsin-like activity and 20S proteasome levels. Prior injections of vitamin E diminished METH-induced changes to parkin and the 26S proteasome as well as long-term decreases in DA and its metabolites' concentrations in striatal tissue. These results suggest that METH causes lipid peroxidation-mediated damage to parkin and the 26S proteasome. As the changes in parkin and 26S occur before the sustained deficits in DAergic markers, an early loss of UPS function may be important in mediating the long-term degeneration of striatal DAergic terminals via toxic accumulation of parkin substrates and damaged proteins.  相似文献   
99.
研究2种肽链延长因子(eEF1A-1,eEF1A-2)在不同发育阶段的小鼠神经元中的表达特征,探 讨其调控机制.应用Western印迹和组织免疫荧光技术分析两蛋白质在不同基因型小鼠(n =10)神经细胞中的表达水平和分布.结果表明,在胚胎期和幼龄期的野生型小鼠神经元胞 质中,eEF1A-1呈高水平表达并随发育而下降,于出生后26 d时停止表达;而eEF1A-2蛋白于出生后7 d开始表达并呈上调趋势,出生后20 d时达到最高水平,其后一直保持稳定表达,2种肽链延长因子在野生型小鼠神经元中的表达随发育而呈相反变化.eEF1A_2基因突变小鼠无eEF1A-2蛋白,eEF1A_1蛋白的表达模式与野生型小鼠基本类似,但出生后26 d时仍有微量表达.2种肽链延长因子在野生型小鼠发育阶段的表达水平变化受内在机制调控,不直接受各自表达水平的影响;eEF1A_2蛋白与神经元生理功能的维持有密切关系.  相似文献   
100.
Possible biosynthetic pathways of N-acyldopamines in rat tissues were compared. It was shown that an insignificant amount of the conjugation products was formed during the incubation of arachidonic acid and dopamine, whereas the substitution of tyrosine for dopamine resulted in the productive biosynthesis of N-arachidonoyldopamine. The biosynthesis presumably involves several closely conjugated enzymatic stages, and free fatty acids rather than their CoA esters served as the starting substrates. The decarboxylation stage probably precedes the stage of catechol system formation, because N-acetyltyramine (a probable intermediate) was easily oxidized by monophenol monooxygenase to N-acyldopamine, whereas N-acyltyrosine is hydrolyzed under these conditions. Biosynthesis of N-acyldopamines in a cell-free medium was accompanied by their methylation. The possibility of oxidative metabolism of N-acyldopamines, which could serve as co-substrates or inhibitors of different oxidoreductases, was shown for the first time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号