首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3594篇
  免费   198篇
  国内免费   100篇
  3892篇
  2024年   8篇
  2023年   53篇
  2022年   75篇
  2021年   148篇
  2020年   95篇
  2019年   119篇
  2018年   91篇
  2017年   67篇
  2016年   97篇
  2015年   120篇
  2014年   173篇
  2013年   201篇
  2012年   144篇
  2011年   156篇
  2010年   138篇
  2009年   153篇
  2008年   211篇
  2007年   171篇
  2006年   163篇
  2005年   155篇
  2004年   154篇
  2003年   140篇
  2002年   125篇
  2001年   108篇
  2000年   67篇
  1999年   84篇
  1998年   69篇
  1997年   56篇
  1996年   55篇
  1995年   70篇
  1994年   58篇
  1993年   63篇
  1992年   46篇
  1991年   34篇
  1990年   34篇
  1989年   25篇
  1988年   19篇
  1987年   17篇
  1986年   20篇
  1985年   22篇
  1984年   15篇
  1983年   16篇
  1982年   13篇
  1981年   14篇
  1980年   8篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1973年   2篇
排序方式: 共有3892条查询结果,搜索用时 15 毫秒
31.
江连海  沈锷 《生理学报》1985,37(6):503-509
在麻醉的32只猫记录了电刺激颌下腺神经支引起的上涎核平均场电位和单位放电。逆行电刺激颌下腺神经支引起的上涎核平均场电位分布在同侧脑干背面闩部头端5.5—8mm处,与过去的组织学结果大致符合。用微电极在上涎核记录了68个对刺激颌下腺神经支有反应的单位,其中33个单位作了碰撞试验。有9个单位符合逆向反应标准,它们是真正的颌下腺节前神经元,逆行反应的潜伏期为14.4±2.5ms,其轴突传导速度为2.9±0.1m/s。其他不符合逆向反应标准的单位,对刺激颌下腺神经支仍能发生反应,估计多为中间神经元。在一部分单位观察了电刺激舌神经或味觉刺激舌引起的反应。根据这些观察对上涎核内存在复杂神经元回路的可能性作了讨论。  相似文献   
32.
Rat sympathetic neurons undergo programmed cell death (PCD) in vitro and in vivo when they are deprived of nerve growth factor (NGF). Chronic depolarization of these neurons in cell culture with elevated concentrations of extracellular potassium ([K+]o) prevents this death. The effect of prolonged depolarization on neuronal survival is thought to be mediated by a rise of intracellular calcium concentration ([Ca2+]i) caused by Ca2+ influx through voltage-gated channels. In this report we investigate the effects of chronic treatment of rat sympathetic neurons with thapsigargin, an inhibitor of intracellular Ca2+ sequestration. In medium containing a normal concentration of extracellular Ca2+ ([Ca2+]o), thapsigargin caused a sustained rise of intracellular Ca2+ concentration and partially blocked death of NGF-deprived cells. Elevating [Ca2+]o in the presence of thapsigargin further increased [Ca2+]i, suggesting that the sustained rise of [Ca2+]i was caused by a thapsigargin-induced Ca2+ influx. This treatment potentiated the effect of thapsigargin on survival. The dihydropyridine Ca2+ channel antagonist, nifedipine, blocked both a sustained elevation of [Ca2+]i and enhanced survival caused by depolarization with elevated [K+]o, suggesting that these effects are mediated by Ca2+ influx through L-type channels. Nifedipine did not block the sustained rise of [Ca2+]i or enhanced survival caused by thapsigargin treatment, indicating that these effects were not mediated by influx of Ca2+ through L-type channels. These results provide additional evidence that increased [Ca2+]i can suppress neuronal PCD and identify a novel method for chronically raising neuronal [Ca2+]i for investigation of this and other Ca2+-dependent phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   
33.
The plasma membrane of neurons consists of distinct domains, each of which carries specialized functions and a characteristic set of membrane proteins. While this compartmentalized membrane organization is essential for neuronal functions, it remains controversial how neurons establish these domains on the laterally fluid membrane. Here, using immunostaining, lipid-MS analysis and gene ablation with the CRISPR/Cas9 system, we report that the pancreatic lipase-related protein 2 (PLRP2), a phospholipase A1 (PLA1), is a key organizer of membrane protein localization at the neurite tips of PC12 cells. PLRP2 produced local distribution of 1-oleoyl-2-palmitoyl-PC at these sites through acyl-chain remodeling of membrane phospholipids. The resulting lipid domain assembled the syntaxin 4 (Stx4) protein within itself by selectively interacting with the transmembrane domain of Stx4. The localized Stx4, in turn, facilitated the fusion of transport vesicles that contained the dopamine transporter with the domain of the plasma membrane, which led to the localized distribution of the transporter to that domain. These results revealed the pivotal roles of PLA1, specifically PLRP2, in the formation of functional domains in the plasma membrane of neurons. In addition, our results suggest a mode of membrane organization in which the local acyl-chain remodeling of membrane phospholipids controls the selective localization of membrane proteins by regulating both lipid-protein interactions and the fusion of transport vesicles to the lipid domain.  相似文献   
34.
Possible biosynthetic pathways of N-acyldopamines in rat tissues were compared. It was shown that an insignificant amount of the conjugation products was formed during the incubation of arachidonic acid and dopamine, whereas the substitution of tyrosine for dopamine resulted in the productive biosynthesis of N-arachidonoyldopamine. The biosynthesis presumably involves several closely conjugated enzymatic stages, and free fatty acids rather than their CoA esters served as the starting substrates. The decarboxylation stage probably precedes the stage of catechol system formation, because N-acetyltyramine (a probable intermediate) was easily oxidized by monophenol monooxygenase to N-acyldopamine, whereas N-acyltyrosine is hydrolyzed under these conditions. Biosynthesis of N-acyldopamines in a cell-free medium was accompanied by their methylation. The possibility of oxidative metabolism of N-acyldopamines, which could serve as co-substrates or inhibitors of different oxidoreductases, was shown for the first time.  相似文献   
35.
36.
37.
After preliminary training to open a sliding door using their head and their paw, dogs were given a discrimination task in which they were rewarded with food for opening the door using the same method (head or paw) as demonstrated by their owner (compatible group), or for opening the door using the alternative method (incompatible group). The incompatible group, which had to counterimitate to receive food reward, required more trials to reach a fixed criterion of discrimination performance (85% correct) than the compatible group. This suggests that, like humans, dogs are subject to ‘automatic imitation’; they cannot inhibit online the tendency to imitate head use and/or paw use. In a subsequent transfer test, where all dogs were required to imitate their owners'' head and paw use for food reward, the incompatible group made a greater proportion of incorrect, counterimitative responses than the compatible group. These results are consistent with the associative sequence learning model, which suggests that the development of imitation depends on sensorimotor experience and phylogenetically general mechanisms of associative learning. More specifically, they suggest that the imitative behaviour of dogs is shaped more by their developmental interactions with humans than by their evolutionary history of domestication.  相似文献   
38.
Summary Ontogenetic development of LHRH-containing neurons was studied by fluorescence and enzyme immunohistochemistry in rats. In in vitro studies, the tissues of the septal-chiasmatic and mediobasal hypothalamic areas of fetal rats on day 16.5 or 18.5 of gestation were trypsinized separately for dissociation of the neural cells, and cultured for several days. Immunopositive reaction against LHRH was first detected in nerve cells derived from both areas of the hypothalamus of the fetuses on days 16.5 and 18.5 of gestation, after 8 and 6 days culture, respectively. The cells were small, and seemed to be bipolar in morphology indicating an axon and arborized dendrites. Immunopositive material occurred in the cell soma as well as in the cellular processes. In in vivo studies, immunopositive material, possibly deposited in nerve fibers, appeared first in OVLT and simultaneously in the external layer of the median eminence of fetuses on day 20.5 of gestation. The immunoreactive fibers increased in number in both parts with development, especially after birth in the median eminence. No immunopositive material was detected within any neural cell bodies nor in the cytoplasm of any ependymal cells.This work was financed by the Ministry of Education, Japan. No. 257008. We would like to thank Dr. Katsuhiko Saito (Department of Surgery, Tokushima University) for his kind advice on the preparation of the antibody used for the immunofluorescence study.  相似文献   
39.
Neurological development and functioning of dopamine (DA) neurotransmission is adversely affected by iron deficiency in early life. Iron-deficient rats demonstrate significant elevations in extracellular DA and a reduction in dopamine transporter (DAT) densities in the caudate putamen and nucleus accumbens. To explore possible mechanisms by which cellular iron concentrations control DAT functioning, endogenous DAT-expressing PC12 cells were used to determine the effect of iron chelation on DAT protein and mRNA expression patterns. In addition, we used human DAT (hDAT)-transfected Neuro2a (N2A) cells to examine DAT degradation and trafficking patterns. A 50 microM treatment for 24 h with the iron chelator, desferrioxamine (DFO), significantly decreased dopamine uptake in a dose-dependent manner, with no apparent change in K(m), in both PC12 and N2A cells. Reduced DA uptake was accompanied by concentration- and time-dependent reductions in total DAT protein levels in both cell lines. Exposure to increasing concentrations of DFO did not significantly alter DAT mRNA in either PC12 or N2A cells. However, DAT degradation rates increased three-fivefold in both cell types exposed to 50 microM DFO for 24 h. Biotinylation studies in N2A cells indicate a more dramatic loss of DAT in the membrane fraction, while OptiPrep fractionation experiments revealed an increase in lysosomal DAT with iron chelation. Inhibition of protein kinase C activation with staurosporin prevented the effect of iron chelation on DAT function, suggesting that in vitro iron chelation affects DAT primarily through the effects on trafficking rather than on synthesis.  相似文献   
40.
活体动物全细胞记录技术及其应用   总被引:6,自引:0,他引:6  
活体动物全细胞记录技术不仅可以用于研究感觉系统对自然刺激(如视觉系统的光刺激、听觉系统的声音刺激等)反应的特性和规律,还可以较准确地记录细胞的突触电位(包括阈下反应),实现EPSP和IPSP的相对分离,并实现活体细胞内灌流,从而进一步研究感觉信息的处理机制。本文较为详细地介绍了在活体动物上进行全细胞记录的方法,包括一些技术细节和关键仪器设备的选取原则,举例说明了该技术在视觉系统研究和体感系统研究中的应用,并讨论了这一方法在神经科学中的应用前景。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号