首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1488篇
  免费   377篇
  国内免费   280篇
  2145篇
  2024年   9篇
  2023年   108篇
  2022年   51篇
  2021年   63篇
  2020年   132篇
  2019年   139篇
  2018年   131篇
  2017年   132篇
  2016年   126篇
  2015年   117篇
  2014年   82篇
  2013年   134篇
  2012年   112篇
  2011年   98篇
  2010年   77篇
  2009年   111篇
  2008年   99篇
  2007年   82篇
  2006年   57篇
  2005年   41篇
  2004年   61篇
  2003年   24篇
  2002年   33篇
  2001年   23篇
  2000年   27篇
  1999年   15篇
  1998年   11篇
  1997年   11篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1982年   1篇
  1958年   4篇
排序方式: 共有2145条查询结果,搜索用时 15 毫秒
921.
刘子熙  王治统  赵德强  吴巩  凌俊  周顺利  温媛 《生态学报》2023,43(23):9867-9876
气候变暖和秸秆还田是影响农田生态系统碳氮循环和土壤养分周转的重要因子,然而两者的交互作用尚缺乏系统研究。通过大田模拟试验,设置土壤正常温度+秸秆不还田、土壤正常温度+秸秆还田、土壤增温+秸秆不还田和土壤增温+秸秆还田四个处理,探讨土壤增温与秸秆还田对土壤养分循环及胞外酶活性的影响。结果显示,土壤增温使硝态氮含量、土壤可溶性有机碳含量和氧化酶活性分别增加了40.4%,25.8%和6.0%,但也使土壤水分、铵态氮含量与土壤微生物量碳分别损失了10.6%,33.4%和29.9%。秸秆还田则使土壤含水量、全氮、铵态氮、有效磷与可溶性有机碳的含量分别增加了7.5%,7.2%,44.1%,32.3%和18.4%,同时也使土壤碳氮磷循环酶的活性分别增加了46.2%,22.9%和20.6%。因此研究表明,土壤增温提高了氧化酶的活性,加速了土壤碳的转化,也使土壤氮矿化与硝化反应速率提高。秸秆还田通过增加外源有机物质,丰富了土壤的碳、氮源,使土壤养分含量提高,一定程度上弥补了增温带来的养分损失。  相似文献   
922.
Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0–10, 10–20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration–though easy and cheap to measure—is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.  相似文献   
923.
Increasing species regression speeds are one of the consequences of global warming, which affect both rare and abundant species. However, long-term monitoring data are rarely available to understand the effects of global warming. Alpine ecosystems on islands are some of the most unique in terms of species composition around the world, with high proportions of endemics. Yet, they are some of the most threatened by climate change. In such areas, global warming causes the invasion of other species that move upwards from ecosystems at lower elevations, which exacerbates climate change impact on these areas. Obtaining fine-scale data on decline rates in keystone species in these areas is essential to understand the degradation processes underway in high mountain systems. This study uses historical aerial images to analyse at a fine-scale the rate of decline of a keystone endemic species, Spartocytisus supranubius (L. f.) Christ ex G. Kunkel, in Tenerife (Canary Islands). Fifty plots were randomly selected in Teide National Park to evaluate the area occupied by living individuals of this species using image segmentation techniques. We conclude that the dominant species in this area, S. supranubius, underwent a mean decline over 32 years between 28.7 and 41.0, depending on whether we consider the observed or interpolated data. Our results suggest that we are facing a possible collapse of the broom and allow us to propose listing this species as vulnerable, according to the IUCN criteria of threatened species. The regression in coverage was negatively correlated with temperature and positively with precipitation.  相似文献   
924.
Global warming may force montane species to shift upward to keep pace with their shifting climate niche. How species differences in such distribution shifts depend on their elevational positions, elevation-dependent warming rates, and other environmental constraints, or plant functional traits is poorly understood. Here, we analyzed for 137 Himalayan tree species how distribution shifts vary with elevational niche positions, environmental constraints, and their functional traits. We developed ecological niche models using MaxEnt by combining species survey and botanical collections data with 19 environmental predictors. Species distributions were projected to 1985 and 2050 conditions, and elevational range parameters and distribution areas were derived. Under the worst-case RCP 8.5 scenario, species are predicted to shift, on average, 3 m/year in optimum elevation, and have 33% increase in distribution area. Highland species showed faster predicted elevational shifts than lowland species. Lowland and highland species are predicted to expand in distribution area in contrast to mid-elevation species. Tree species for which species distribution models are driven by responses to temperature, aridity, or soil clay content showed the strongest predicted upslope shifts. Tree species with conservative trait values that enable them to survive resource poor conditions (i.e., narrow conduits) showed larger predicted upslope shifts than species with wide conduits. The predicted average upslope shift in maximum elevation (8 m/year) is >2 times faster than the current observations indicating that many species will not be able to track climate change and potentially go extinct, unless they are supported by active conservation measures, such as assisted migration.  相似文献   
925.

Aim

Understanding how grain size affects our ability to characterize species responses to ongoing climate change is of crucial importance in the context of an increasing awareness for the substantial difference that exists between coarse spatial resolution macroclimatic data sets and the microclimate actually experienced by organisms. Climate change impacts on biodiversity are expected to peak in mountain areas, wherein the differences between macro and microclimates are precisely the largest. Based on a newly generated fine-scale environmental data for the Canary Islands, we assessed whether data at 100 m resolution is able to provide more accurate predictions than available data at 1 km resolution. We also analysed how future climate suitability predictions of island endemic bryophytes differ depending on the grain size of grids.

Location

Canary Islands.

Time period

Present (1979–2013) and late-century (2071–2100).

Taxa

Bryophytes.

Methods

We compared the accuracy and spatial predictions using ensemble of small models for 14 Macaronesian endemic bryophyte species. We used two climate data sets: CHELSA v1.2 (~1 km) and CanaryClim v1.0 (100 m), a downscaled version of the latter utilizing data from local weather stations. CanaryClim also encompasses future climate data from five individual model intercomparison projects for three warming shared socio-economic pathways.

Results

Species distribution models generated from CHELSA and CanaryClim exhibited a similar accuracy, but CanaryClim predicted buffered warming trends in mid-elevation ridges. CanaryClim consistently returned higher proportions of newly suitable pixels (8%–28%) than CHELSA models (0%–3%). Consequently, the proportion of species predicted to occupy pixels of uncertain suitability was higher with CHELSA (3–8 species) than with CanaryClim (0–2 species).

Main conclusions

The resolution of climate data impacted the predictions rather than the performance of species distribution models. Our results highlight the crucial role that fine-resolution climate data sets can play in predicting the potential distribution of both microrefugia and new suitable range under warming climate.  相似文献   
926.
Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2, while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of “in situ” analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.  相似文献   
927.
The thermal compensatory response of microbial respiration contributes to a decrease in warming-induced enhancement of soil respiration over time, which could weaken the positive feedback between the carbon cycle and climate warming. Climate warming is also predicted to cause a worldwide decrease in soil moisture, which has an effect on the microbial metabolism of soil carbon. However, whether and how changes in moisture affect the thermal compensatory response of microbial respiration are unexplored. Here, using soils from an 8-year warming experiment in an alpine grassland, we assayed the thermal response of microbial respiration rates at different soil moisture levels. The results showed that relatively low soil moisture suppressed the thermal compensatory response of microbial respiration, leading to an enhanced response to warming. A subsequent moisture incubation experiment involving off-plot soils also showed that the response of microbial respiration to 100 d warming shifted from a slight compensatory response to an enhanced response with decreasing incubation moisture. Further analysis revealed that such respiration regulation by moisture was associated with shifts in enzymatic activities and carbon use efficiency. Our findings suggest that future drought induced by climate warming might weaken the thermal compensatory capacity of microbial respiration, with important consequences for carbon–climate feedback.  相似文献   
928.
Sub-Saharan Africa (SSA) must undertake proper cropland intensification for higher crop yields while minimizing climate impacts. Unfortunately, no studies have simultaneously quantified greenhouse gas (GHG; CO2, CH4, and N2O) emissions and soil organic carbon (SOC) change in SSA croplands, leaving it a blind spot in the accounting of global warming potential (GWP). Here, based on 2-year field monitoring of soil emissions of CO2, CH4, and N2O, as well as SOC changes in two contrasting soil types (sandy vs. clayey), we provided the first, full accounting of GWP for maize systems in response to cropland intensifications (increasing nitrogen rates and in combination with crop residue return) in SSA. To corroborate our field observations on SOC change (i.e., 2-year, a short duration), we implemented a process-oriented model parameterized with field data to simulate SOC dynamic over time. We further tested the generality of our findings by including a literature synthesis of SOC change across maize-based systems in SSA. We found that nitrogen application reduced SOC loss, likely through increased biomass yield and consequently belowground carbon allocation. Residue return switched the direction of SOC change from loss to gain; such a benefit (SOC sequestration) was not compromised by CH4 emissions (negligible) nor outweighed by the amplified N2O emissions, and contributed to negative net GWP. Overall, we show encouraging results that, combining residue and fertilizer-nitrogen input allowed for sequestering 82–284 kg of CO2-eq per Mg of maize grain produced across two soils. All analyses pointed to an advantage of sandy over clayey soils in achieving higher SOC sequestration targets, and thus call for a re-evaluation on the potential of sandy soils in SOC sequestration across SSA croplands. Our findings carry important implications for developing viable intensification practices for SSA croplands in mitigating climate change while securing food production.  相似文献   
929.
Thermal tolerance plasticity is a core mechanism by which organisms can mitigate the effects of climate change. As a result, there is a need to understand how variation in tolerance plasticity arises. The baseline tolerance/plasticity trade-off hypothesis (hereafter referred to as the trade-off hypothesis, TOH) has recently emerged as a potentially powerful explanation. The TOH posits that organisms with high baseline thermal tolerance have reduced thermal tolerance plasticity relative to those with low baseline tolerance. Many studies have found support for the TOH. However, this support must be regarded cautiously because the most common means of testing the TOH can yield spurious “trade-offs” due to regression to the mean. I acquired data for 25 previously published analyses that supported the TOH at the intraspecific level and reanalyzed them after applying a method that adjusts plasticity estimates for regression to the mean. Only six of the 25 analyses remained statistically significant after adjustment, and effect size and variance explained decreased in all cases. The few data sets in which support for the TOH was maintained after adjustment point to areas of future study, but are too few to make generalizations at this point. In sum, regression to the mean has led to a substantial overestimation of support for the TOH and must be accounted for in future tests of the hypothesis.  相似文献   
930.
Climate change projections indicate more frequent and severe tropical marine heatwaves (MHWs) and accompanying hypoxia year-round. However, most studies have focused on peak summer conditions under the assumption that annual maximum temperatures will induce the greatest physiological consequences. This study challenges this idea by characterizing seasonal MHWs (i.e., mean, maximum, and cumulative intensities, durations, heating rates, and mean annual occurrence) and comparing metabolic traits (i.e., standard metabolic rate (SMR), Q10 of SMR, maximum metabolic rate (MMR), aerobic scope, and critical oxygen tension (Pcrit)) of winter- and summer-acclimatized convict tang (Acanthurus triostegus) to the combined effects of MHWs and hypoxia. Fish were exposed to one of six MHW treatments with seasonally varying maximum intensities (winter: 24.5, 26.5, 28.5°C; summer: 28.5, 30.5, 32.5°C), representing past and future MHWs under IPCC projections (i.e., +0, +2, +4°C). Surprisingly, MHW characteristics did not significantly differ between seasons, yet SMR was more sensitive to winter MHWs (mean Q10 = 2.92) than summer MHWs (mean Q10 = 1.81), despite higher absolute summer temperatures. Concurrently, MMR increased similarly among winter +2 and +4°C treatments (i.e., 26.5, 28.5°C) and all summer MHW treatments, suggesting a ceiling for maximal MMR increase. Aerobic scope did not significantly differ between seasons nor among MHW treatments. While mean Pcrit did not significantly vary between seasons, warming of +4°C during winter (i.e., 28.5°C) significantly increased Pcrit relative to the winter control group. Contrary to the idea of increased sensitivity to MHWs during the warmest time of year, our results reveal heightened sensitivity to the deleterious effects of winter MHWs, and that seasonal acclimatization to warmer summer conditions may bolster metabolic resilience to warming and hypoxia. Consequently, physiological sensitivity to MHWs and hypoxia may extend across larger parts of the year than previously expected, emphasizing the importance of evaluating climate change impacts during cooler seasons when essential fitness-related traits such as reproduction occur in many species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号