首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1489篇
  免费   371篇
  国内免费   285篇
  2145篇
  2024年   9篇
  2023年   108篇
  2022年   51篇
  2021年   63篇
  2020年   132篇
  2019年   139篇
  2018年   131篇
  2017年   132篇
  2016年   126篇
  2015年   117篇
  2014年   82篇
  2013年   134篇
  2012年   112篇
  2011年   98篇
  2010年   77篇
  2009年   111篇
  2008年   99篇
  2007年   82篇
  2006年   57篇
  2005年   41篇
  2004年   61篇
  2003年   24篇
  2002年   33篇
  2001年   23篇
  2000年   27篇
  1999年   15篇
  1998年   11篇
  1997年   11篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1982年   1篇
  1958年   4篇
排序方式: 共有2145条查询结果,搜索用时 15 毫秒
891.
甲烷生成与产甲烷菌群落关系密切,探究温度升高对产甲烷菌群落的影响可以预测产甲烷菌群落特征对气候变暖的响应.以青海湖鸟岛为研究对象,通过高通量测序方法开展研究.结果表明,基于97%的序列相似度聚类,共得到697个操作分类单元.鸟岛土壤产甲烷菌群落以甲烷微菌目(Methanomicrobiales)、甲烷八叠球菌目(Met...  相似文献   
892.
893.
The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long‐lived, they may not be able to cope with ongoing climatic changes. Here, we coupled ecological niche modelling (ENM) and genetic simulations to forecast the effects of climatic changes on the genetic diversity and the structure of genetic clusters. Genetic simulations were conditioned to climatic variables and restricted to plant dispersal and establishment. We used a Neotropical savanna tree as species model that shows a preference for hot and drier climates, but with low temperature seasonality. The ENM predicts a decreasing range size along the more severe future climatic scenario. Additionally, genetic diversity and allelic richness also decrease with range retraction and climatic genetic clusters are lost for both future scenarios, which will lead genetic variability to homogenize throughout the landscape. Besides, climatic genetic clusters will spatially reconfigure on the landscape following displacements of climatic conditions. Our findings indicate that climate change effects will challenge population adaptation to new environmental conditions because of the displacement of genetic ancestry clusters from their optimal conditions.  相似文献   
894.
895.
896.
  • Plants are known to respond to warming temperatures. Few studies, however, have included the temperature experienced by the parent plant in the experimental design, in spite of the importance of this factor for population dynamics.
  • We investigated the phenological and growth responses of seedlings of two key temperate tree species (Fagus sylvatica and Quercus robur) to spatiotemporal temperature variation during the reproductive period (parental generation) and experimental warming of the offspring. To this end, we sampled oak and beech seedlings of different ages (1–5 years) from isolated mother trees and planted the seedlings in a common garden.
  • Warming of the seedlings advanced bud burst in both species. In oak seedlings, higher temperatures experienced by mother trees during the reproductive period delayed bud burst in control conditions, but advanced bud burst in heated seedlings. In beech seedlings, bud burst timing advanced both with increasing temperatures during the reproductive period of the parents and with experimental warming of the seedlings. Relative diameter growth was enhanced in control oak seedlings but decreased with warming when the mother plant experienced higher temperatures during the reproductive period.
  • Overall, oak displayed more plastic responses to temperatures than beech. Our results emphasise that temperature during the reproductive period can be a potential determinant of tree responses to climate change.
  相似文献   
897.
898.
899.
Populations at the edge of species distributions are especially vulnerable to climate change. Genetic changes as well as modification of their population structure are expected as reactions to global warming. Atlantic salmon ( Salmo salar ) inhabiting south France has been chosen as a model for studying the effect of global warming in marginal populations during the last 15 years. Increased gene flow between neighboring populations and dichotomy of maturation age between sexes have been identified as two main population changes significantly associated with high values of the North Atlantic Oscillation index, a global climate indicator. Although occurrence of isolated populations in each river (or even tributary) is a paradigm for this species, at least in northern areas, increased gene flow between rivers is forecasted as long as climate warming increases, favoring metapopulations at regional level.  相似文献   
900.
ABSTRACT. High latitude microbial communities, incurring increased global warming, are a potential major source of respiratory CO2 contributing to an enhanced greenhouse effect. Data on respiration and microbial density are presented for a moist, high tussock site compared with a low, water saturated site. The density of bacteria and eukaryotic microbes was nearly equivalent at both sites and potentially could yield substantial release of respiratory CO2 with continued warming. Respiratory rates for soil from the high site were greater than the low. The Q10 of 2.4 for the high tussock sample was approximately 1.3 × that of the low site sample (Q10 of 1.7).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号