首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1488篇
  免费   375篇
  国内免费   278篇
  2024年   6篇
  2023年   108篇
  2022年   50篇
  2021年   63篇
  2020年   132篇
  2019年   139篇
  2018年   131篇
  2017年   132篇
  2016年   126篇
  2015年   117篇
  2014年   82篇
  2013年   134篇
  2012年   112篇
  2011年   98篇
  2010年   77篇
  2009年   111篇
  2008年   99篇
  2007年   82篇
  2006年   57篇
  2005年   41篇
  2004年   61篇
  2003年   24篇
  2002年   33篇
  2001年   23篇
  2000年   27篇
  1999年   15篇
  1998年   11篇
  1997年   11篇
  1996年   5篇
  1995年   7篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   2篇
  1989年   1篇
  1982年   1篇
  1958年   4篇
排序方式: 共有2141条查询结果,搜索用时 906 毫秒
121.
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive‐based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment.  相似文献   
122.
Conducting manipulative climate change experiments in complex vegetation is challenging, given considerable temporal and spatial heterogeneity. One specific challenge involves warming of both plants and soils to depth. We describe the design and performance of an open‐air warming experiment called Boreal Forest Warming at an Ecotone in Danger (B4WarmED) that addresses the potential for projected climate warming to alter tree function, species composition, and ecosystem processes at the boreal‐temperate ecotone. The experiment includes two forested sites in northern Minnesota, USA, with plots in both open (recently clear‐cut) and closed canopy habitats, where seedlings of 11 tree species were planted into native ground vegetation. Treatments include three target levels of plant canopy and soil warming (ambient, +1.7 °C, +3.4 °C). Warming was achieved by independent feedback control of voltage input to aboveground infrared heaters and belowground buried resistance heating cables in each of 72‐7.0 m2 plots. The treatments emulated patterns of observed diurnal, seasonal, and annual temperatures but with superimposed warming. For the 2009 to 2011 field seasons, we achieved temperature elevations near our targets with growing season overall mean differences (?Tbelow) of +1.84 °C and +3.66 °C at 10 cm soil depth and (?Tabove) of +1.82 °C and +3.45 °C for the plant canopies. We also achieved measured soil warming to at least 1 m depth. Aboveground treatment stability and control were better during nighttime than daytime and in closed vs. open canopy sites in part due to calmer conditions. Heating efficacy in open canopy areas was reduced with increasing canopy complexity and size. Results of this study suggest the warming approach is scalable: it should work well in small‐statured vegetation such as grasslands, desert, agricultural crops, and tree saplings (<5 m tall).  相似文献   
123.
Trade plays a key role in the spread of alien species and has arguably contributed to the recent enormous acceleration of biological invasions, thus homogenizing biotas worldwide. Combining data on 60‐year trends of bilateral trade, as well as on biodiversity and climate, we modeled the global spread of plant species among 147 countries. The model results were compared with a recently compiled unique global data set on numbers of naturalized alien vascular plant species representing the most comprehensive collection of naturalized plant distributions currently available. The model identifies major source regions, introduction routes, and hot spots of plant invasions that agree well with observed naturalized plant numbers. In contrast to common knowledge, we show that the ‘imperialist dogma,’ stating that Europe has been a net exporter of naturalized plants since colonial times, does not hold for the past 60 years, when more naturalized plants were being imported to than exported from Europe. Our results highlight that the current distribution of naturalized plants is best predicted by socioeconomic activities 20 years ago. We took advantage of the observed time lag and used trade developments until recent times to predict naturalized plant trajectories for the next two decades. This shows that particularly strong increases in naturalized plant numbers are expected in the next 20 years for emerging economies in megadiverse regions. The interaction with predicted future climate change will increase invasions in northern temperate countries and reduce them in tropical and (sub)tropical regions, yet not by enough to cancel out the trade‐related increase.  相似文献   
124.
Rising atmospheric CO2 concentration ([CO2]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free‐air CO2 enrichment (FACE) technology was used to target atmospheric [CO2] to 200 μmol mol?1 above ambient [CO2] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas‐exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season‐long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down‐regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2] unless appropriate adaptation traits can be introduced into future cultivars.  相似文献   
125.
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non‐target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non‐target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non‐target effect magnitude and increase non‐target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.  相似文献   
126.
Temporal increases of tree mortality have been observed in regions where global warming has decreased long‐term water availability and/or induced droughts. However, temporal decreases in water availability are not a global phenomenon. Understanding how water deficit‐free forests respond to the recent effects of climate change is paramount towards a full appreciation of the impacts of climate change on global forests. Here, we reveal temporally increasing tree mortality across all study species over the last three decades in the central boreal forests of Canada, where long‐term water availability has increased without apparent climate change‐associated drought. In addition, we find that the effects of conspecific tree‐to‐tree competition have intensified temporally as a mechanism for the increased mortality of shade‐intolerant tree species. Our results suggest that the consequences of climate change on tree mortality are more profound than previously thought.  相似文献   
127.
Species' responses to environmental changes such as global warming are affected not only by trends in mean conditions, but also by natural and human‐induced environmental fluctuations. Methods are needed to predict how such environmental variation affects ecological and evolutionary processes, in order to design effective strategies to conserve biodiversity under global change. Here, we review recent theoretical and empirical studies to assess: (1) how populations respond to changes in environmental variance, and (2) how environmental variance affects population responses to changes in mean conditions. Contrary to frequent claims, empirical studies show that increases in environmental variance can increase as well as decrease long‐term population growth rates. Moreover, environmental variance can alter and even reverse the effects of changes in the mean environment, such that even if environmental variance remains constant, omitting it from population models compromises their ability to predict species' responses to changes in mean conditions. Drawing on theory relating these effects of environmental variance to the curvatures of population growth responses to the environment, we outline how species' traits such as phylogenetic history and body mass could be used to predict their responses to global change under future environmental variability.  相似文献   
128.
129.
Dynamics of gaseous nitrogen and carbon fluxes in riparian alder forests   总被引:2,自引:0,他引:2  
We studied greenhouse gas (GHG) fluxes in two differently loaded riparian Alnus incana-dominated forests in agricultural landscapes of southern Estonia: a 33-year-old stand in Porijõgi, in which the uphill agricultural activities had been abandoned since the middle of the 1990s, and a 50-year-old stand in Viiratsi, which still receives polluted lateral flow from uphill fields fertilized with pig slurry. In Porijõgi, closed-chamber based sampling lasted from October 2001 to October 2009, whereas in Viiratsi the sampling period was from November 2003 to October 2009. Both temporal and spatial variations in all GHG gas fluxes were remarkable. Local differences in GHG fluxes between micro-sites (“Edge”, “Dry” and “Wet” in Porijõgi, and “Wet”, “Slope” and “Dry” in Viiratsi) were sometimes greater than those between sites. Median values of GHG fluxes from both sites over the whole study period and all microsites did not differ significantly, being 45 and 42 mg CO2-C m−2 h−1, 8 and 0.5 μg CH4-C m−2 h−1, 1.0 and 2.1 mg N2-N m−2 h−1, and 5 and 9 μg N2O-N m−2 h−1, in Porijõgi and Viiratsi, respectively. The N2:N2O ratio in Viiratsi (40-1200) was lower than in Porijõgi (10-7600). The median values-based estimation of the Global Warming Potential of CH4 and N2O was 19 and 185 kg CO2 equivalents (eq) ha−1 yr−1 in Porijõgi and −14 and 336 kg CO2 eq ha−1 yr−1 in Viiratsi, respectively. A significant Spearman rank correlation was found between the mean monthly air temperature and CO2, CH4 and N2 fluxes in Porijõgi, and N2O flux in Viiratsi, and between the monthly precipitation and CH4 fluxes in both study sites. Higher groundwater level significantly increases CH4 emission and decreases CO2 and N2O emission, whereas higher soil temperature significantly increases N2O, CH4 and N2 emission values. In Porijõgi, GHG emissions did not display any discernable trend, whereas in Viiratsi a significant increase in CO2, N2, and N2O emissions has been found. This may be a result of the age of the grey alder stand, but may also be caused by the long-term nutrient load of this riparian alder stand, which indicates a need for the management of similar heavily loaded riparian alder stands.  相似文献   
130.
为了解未来增温条件下,青藏高原高寒草甸凋落物质量如何变化,将有助于增强对高寒草甸生态系统碳源/汇效应的认识.该文通过定位可控的增温试验平台,动态监测了凋落物生物量及其质量的变化.结果表明:增温显著地促进了凋落物的分解速率(F=35.757,P<0.001),降低了凋落物中的C、N含量及其C/N比,但提高了凋落物中的P含...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号