首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1672篇
  免费   398篇
  国内免费   300篇
  2024年   11篇
  2023年   109篇
  2022年   54篇
  2021年   68篇
  2020年   143篇
  2019年   148篇
  2018年   145篇
  2017年   149篇
  2016年   138篇
  2015年   132篇
  2014年   87篇
  2013年   167篇
  2012年   116篇
  2011年   101篇
  2010年   82篇
  2009年   117篇
  2008年   102篇
  2007年   87篇
  2006年   62篇
  2005年   46篇
  2004年   66篇
  2003年   30篇
  2002年   37篇
  2001年   28篇
  2000年   32篇
  1999年   14篇
  1998年   15篇
  1997年   12篇
  1996年   8篇
  1995年   7篇
  1994年   2篇
  1993年   8篇
  1992年   6篇
  1991年   13篇
  1990年   2篇
  1989年   7篇
  1988年   1篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1978年   1篇
  1976年   1篇
  1958年   4篇
排序方式: 共有2370条查询结果,搜索用时 15 毫秒
121.
122.
呼伦贝尔沙地45年来气候变化及其对生态环境的影响   总被引:1,自引:0,他引:1  
赵慧颖 《生态学杂志》2007,26(11):1817-1821
采用数理统计和对比分析方法,对近45年呼伦贝尔沙地气象观测资料和草场沙化、退化面积、植被状况等资料进行了分析。结果表明:呼伦贝尔沙地总体气候暖干化趋势显著;气温逐年升高、降水量减少、蒸发量增加和极端气候事件增多,使流动沙地面积不断增加,植被盖度下降。卫星遥感监测和全国沙漠化普查结果进一步表明,呼伦贝尔沙地的沙漠化正在扩展,生态环境正在恶化。逐年减少的大风日数和沙尘暴日数有利于该地区生态的保护与建设。20世纪80年代以来,沙区各级政府加大了对沙化的治理力度,沙地局部植被恢复较快。  相似文献   
123.
A cause and effect understanding of thermal limitation and adaptation at various levels of biological organization is crucial in the elaboration of how the Antarctic climate has shaped the functional properties of extant Antarctic fauna. At the same time, this understanding requires an integrative view of how the various levels of biological organization may be intertwined. At all levels analysed, the functional specialization to permanently low temperatures implies reduced tolerance of high temperatures, as a trade-off. Maintenance of membrane fluidity, enzyme kinetic properties (Km and k(cat)) and protein structural flexibility in the cold supports metabolic flux and regulation as well as cellular functioning overall. Gene expression patterns and, even more so, loss of genetic information, especially for myoglobin (Mb) and haemoglobin (Hb) in notothenioid fishes, reflect the specialization of Antarctic organisms to a narrow range of low temperatures. The loss of Mb and Hb in icefish, together with enhanced lipid membrane densities (e.g. higher concentrations of mitochondria), becomes explicable by the exploitation of high oxygen solubility at low metabolic rates in the cold, where an enhanced fraction of oxygen supply occurs through diffusive oxygen flux. Conversely, limited oxygen supply to tissues upon warming is an early cause of functional limitation. Low standard metabolic rates may be linked to extreme stenothermy. The evolutionary forces causing low metabolic rates as a uniform character of life in Antarctic ectothermal animals may be linked to the requirement for high energetic efficiency as required to support higher organismic functioning in the cold. This requirement may result from partial compensation for the thermal limitation of growth, while other functions like hatching, development, reproduction and ageing are largely delayed. As a perspective, the integrative approach suggests that the patterns of oxygen- and capacity-limited thermal tolerance are linked, on one hand, with the capacity and design of molecules and membranes, and, on the other hand, with life-history consequences and lifestyles typically seen in the permanent cold. Future research needs to address the detailed aspects of these interrelationships.  相似文献   
124.
Open-top chambers were used to estimate the possible effects of global warming on δ13C of seven plant species grown in alpine meadow ecosystem. The δ13C values of plant species were lower after long-term growth in open-top chambers. In the course of experiment, temperature significantly increased inside the chambers by 4°C. Plant species grown at a lower elevation above sea level had higher δ13C values as compared to those grown at a higher elevation. This was in accordance with the effect of open-top chamber on δ13C values in plants. Greater availability of CO2 and lower water vapor pressure at higher temperature inside the chambers, as indicated by an increase in discrimination against 13CO2, probably result in more negative δ13C values of plants because higher stomatal conductance increases availability of CO2 and causes greater discrimination against 13CO2. The plant species studied could be the indicator species for testing global warming by the change in carbon isotope ratios at the two growth temperatures. This text was submitted by the authors in English.  相似文献   
125.
High mountain ecosystems are defined by low temperatures and are therefore considered to react sensitively to climate warming. Responding to observed changes in plant species richness on high peaks of the European Alps, an extensive setup of 1 m × 1 m permanent plots was established at the alpine‐nival ecotone (between 2900 and 3450 m) on Mount Schrankogel, a GLORIA master site in the central Tyrolean Alps, Austria, in 1994. Recording was repeated in a representative selection of 362 quadrats in 2004. Ten years after the first recording, we observed an average change in vascular plant species richness from 11.4 to 12.7 species per plot, an increase of 11.8% (or of at least 10.6% at a 95% confidence level). The increase in species richness involved 23 species (about 43% of all taxa found at the ecotone), comprising both alpine and nival species and was pronouncedly higher in plots with subnival/nival vegetation than in plots with alpine grassland vegetation. Only three species showed a decrease in plot occupancy: one was an annual species, one was rare, and one a common nival plant that decreased in one part of the area but increased in the uppermost part. Species cover changed in relation to altitudinal preferences of species, showing significant declines of all subnival to nival plants, whereas alpine pioneer species increased in cover. Recent climate warming in the Alps, which has been twice as high as the global average, is considered to be the primary driver of the observed differential changes in species cover. Our results indicate an ongoing range contraction of subnival to nival species at their rear (i.e. lower) edge and a concurrent expansion of alpine pioneer species at their leading edge. Although this was expected from predictive distribution models and different temperature‐related habitat preferences of alpine and nival species, we provide first evidence on – most likely – warming‐induced species declines in the high European Alps. The projected acceleration of climate warming raises concerns that this phenomenon could become the major threat to biodiversity in high mountains.  相似文献   
126.
127.
128.
Background and Aims Asymmetric warming is one of the distinguishing features of global climate change, in which winter and night-time temperatures are predicted to increase more than summer and diurnal temperatures. Winter warming weakens vernalization and hence decreases the potential to flower for some perennial herbs, and night warming can reduce carbohydrate concentrations in storage organs. This study therefore hypothesized that asymmetric warming should act to reduce flower number and nectar production per flower in a perennial herb, Saussurea nigrescens, a key nectar plant for pollinators in Tibetan alpine meadows.Methods A long-term (6 years) warming experiment was conducted using open-top chambers placed in a natural meadow and manipulated to achieve asymmetric increases in temperature, as follows: a mean annual increase of 0·7 and 2·7 °C during the growing and non-growing seasons, respectively, combined with an increase of 1·6 and 2·8 °C in the daytime and night-time, respectively, from June to August. Measurements were taken of nectar volume and concentration (sucrose content), and also of leaf non-structural carbohydrate content and plant morphology.Key Results Six years of experimental warming resulted in reductions in nectar volume per floret (64·7 % of control), floret number per capitulum (8·7 %) and capitulum number per plant (32·5 %), whereas nectar concentration remained unchanged. Depletion of leaf non-structural carbohydrates was significantly higher in the warmed than in the ambient condition. Overall plant density was also reduced by warming, which, when combined with reductions in flower development and nectar volumes, led to a reduction of ∼90 % in nectar production per unit area.Conclusions The negative effect of asymmetric warming on nectar yields in S. nigrescens may be explained by a concomitant depletion of leaf non-structural carbohydrates. The results thus highlight a novel aspect of how climate change might affect plant–pollinator interactions and plant reproduction via induction of allocation shifts for plants growing in communities subject to asymmetric warming.  相似文献   
129.
Background and Aims Glacier foreland plants are highly threatened by global warming. Regeneration from seeds on deglaciated terrain will be crucial for successful migration and survival of these species, and hence a better understanding of the impacts of climate change on seedling recruitment is urgently needed to predict future plant persistence in these environments. This study presents the first field evidence of the impact of climate change on recruitment success of glacier foreland plants.Methods Seeds of eight foreland species were sown on a foreland site at 2500 m a.s.l., and at a site 400 m lower in altitude to simulate a 2·7 °C increase in mean annual temperature. Soil from the site of origin was used to reproduce the natural germination substrate. Recruitment success, temperature and water potential were monitored for 2 years. The response of seed germination to warming was further investigated in the laboratory.Key Results At the glacier foreland site, seedling emergence was low (0 to approx. 40 %) and occurred in summer in all species after seeds had experienced autumn and winter seasons. However, at the warmer site there was a shift from summer to autumn emergence in two species and a significant increase of summer emergence (13–35 % higher) in all species except two. Survival and establishment was possible for 60–75 % of autumn-emerged seedlings and was generally greater under warmer conditions. Early snowmelt in spring caused the main ecological factors enhancing the recruitment success.Conclusions The results suggest that warming will influence the recruitment of glacier foreland species primarily via the extension of the snow-free period in spring, which increases seedling establishment and results in a greater resistance to summer drought and winter extremes. The changes in recruitment success observed here imply that range shifts or changes in abundance are possible in a future warmer climate, but overall success may be dependent on interactions with shifts in other components of the plant community.  相似文献   
130.
Animals secrete glucocorticoids to deal with daily stressors. Studies have found that supplemental melatonin decreases glucocorticoid metabolite levels in stressed animals. We determined the effect of light interference (LI) and supplemental melatonin on (1) body mass, (2) food intake and (3) glucocorticoid metabolite levels of the striped mouse (Rhabdomys pumilio). Experiment was split into three phases: 8 L: 16 D; 8 L: 16 D with a 15 min light interruption every 4 h; and 8 L: 16 D with a 15 min light interruption every 4 h and melatonin (0.2 μg/ml) added to the water. Body mass was significantly different between phases with lowest body mass (89.17 ± 6.56 g) occurring during standard 8 L: 16 D. LI and melatonin significantly increased body mass. LI increased and melatonin decreased glucocorticoid metabolite levels. LI significantly increased and melatonin significantly decreased assimilation efficiencies possibly due to changes in energetic demands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号