首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3754篇
  免费   730篇
  国内免费   416篇
  2024年   16篇
  2023年   159篇
  2022年   145篇
  2021年   208篇
  2020年   270篇
  2019年   309篇
  2018年   232篇
  2017年   258篇
  2016年   251篇
  2015年   229篇
  2014年   311篇
  2013年   328篇
  2012年   223篇
  2011年   216篇
  2010年   151篇
  2009年   216篇
  2008年   194篇
  2007年   182篇
  2006年   141篇
  2005年   125篇
  2004年   98篇
  2003年   85篇
  2002年   67篇
  2001年   55篇
  2000年   58篇
  1999年   44篇
  1998年   41篇
  1997年   43篇
  1996年   30篇
  1995年   28篇
  1994年   33篇
  1993年   16篇
  1992年   20篇
  1991年   16篇
  1990年   10篇
  1989年   16篇
  1988年   11篇
  1987年   11篇
  1986年   4篇
  1985年   8篇
  1984年   8篇
  1983年   3篇
  1982年   4篇
  1981年   9篇
  1980年   4篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
排序方式: 共有4900条查询结果,搜索用时 15 毫秒
121.
122.
123.
124.
125.
126.
127.
Quantifying the association of plant functional traits to environmental gradients is a promising approach for understanding and projecting community responses to land use and climatic changes. Although habitat fragmentation and climate are expected to affect plant communities interactively, there is a lack of empirical studies addressing trait associations to fragmentation in different climatic regimes.In this study, we analyse data on the key functional traits: specific leaf area (SLA), plant height, seed mass and seed number. First, we assess the evidence for the community assembly mechanisms habitat filtering and competition at different spatial scales, using several null-models and a comprehensive set of community-level trait convergence and divergence indices. Second, we analyse the association of community-mean traits with patch area and connectivity along a south–north productivity gradient.We found clear evidence for trait convergence due to habitat filtering. In contrast, the evidence for trait divergence due to competition fundamentally depended on the null-model used. When the null-model controlled for habitat filtering, there was only evidence for trait divergence at the smallest sampling scale (0.25 m × 0.25 m). All traits varied significantly along the S–N productivity gradient. While plant height and SLA were consistently associated with fragmentation, the association of seed mass and seed number with fragmentation changed along the S–N gradient.Our findings indicate trait convergence due to drought stress in the arid sites and due to higher productivity in the mesic sites. The association of plant traits to fragmentation is likely driven by increased colonization ability in small and/or isolated patches (plant height, seed number) or increased persistence ability in isolated patches (seed mass).Our study provides the first empirical test of trait associations with fragmentation along a productivity gradient. We conclude that it is crucial to study the interactive effects of different ecological drivers on plant functional traits.  相似文献   
128.
Whether or not niche conservatism is common is widely debated. Despite this uncertainty, closely related species are often assumed to be ecologically similar. This principle has led to the proposed use of phylogenetic information in forecasting species responses to environmental change. Tests of niche conservatism often focus on ‘functional traits’ and environmental tolerances, but there have been limited tests for conservatism in species’ responses to changes in the environment, especially in the field. The prevalence of functional convergence and the likelihood of functional trade-offs in a heterogeneous environment suggest that conservatism of the response niche is unlikely to be detectable under natural conditions. To test the relevance of evolutionary information in predicting ecological responses, we tested for conservatism (measured as phylogenetic signal) of grassland plant population responses to 14 treatments (e.g. light, nutrients, water, enemies, mutualists), each manipulated for 2–3 years, and 4 treatment categories (aboveground, belowground, resource, and herbivory) at a single site. Individual treatment responses showed limited evidence of conservatism, with only weak conservatism in plant responses to mycorrhizae and grazing. Aspects of the response niche were conserved among monocots both aboveground and belowground, although the pattern varied. Conservatism was limited to grazing aboveground, but belowground responses were conserved as a group, suggesting fundamental differences in how selection has led to niche conservatism in aboveground and belowground environments. Overall, our results suggest that conservatism of the response niche is not common, but is actually rare. As such, evolutionary relationships are likely to be of limited relevance for predicting species responses under field conditions, at least over the short time scales used in this study.  相似文献   
129.
Niche theory predicts that few closely related species can co‐occur because such species tend to be ecologically similar and niche differentiation is required to avoid competitive exclusion. We analyse the co‐occurrence of a remarkable 10–15 species of the ant genus Monomorium occurring within single 10 × 10 m plots in a tropical savanna of northern Australia. Most of the species are undescribed, so we use genetic analysis to validate our species demarcations. We document nest dispersion patterns, and investigate differentiation in the three primary niche dimensions: space, time and food. We also examine species differences in competitive abilities, by describing rates of foraging activity, foraging ranges, worker aggression, and levels of behavioural dominance. Analyses of nest and forager distributions showed very limited evidence of spatial segregation within plots. The great majority of species foraged either exclusively or primarily during daylight hours. Body size and isotopic analyses indicated very limited dietary differentiation. Such limited niche partitioning occurred despite the species differing markedly in their competitive abilities as measured by rates of resource discovery, recruitment and monopolization. Our findings defy the traditional assumption that multiple closely related and ecologically similar species of highly interactive taxa cannot co‐occur. It seems very likely that species coexistence in our study system is determined to a very large degree by stochastic processes relating to dispersal and establishment, as predicted by neutral theory. However, neutral theory assumes competitive equivalence, whereas we found very marked differences in the competitive abilities of our co‐occurring species. We suggest that competitive exclusion is prevented by the modular nature of ant colonies, with competition limiting colony performance but not preventing occurrence. We conclude that other factors that allow species persistence, and not just competitive equivalence, can allow dispersal and establishment processes to drive species coexistence.  相似文献   
130.
Correlative analyses predict that anthropogenic climate warming will cause widespread extinction but the nature and generality of the underlying mechanisms is unclear. Warming‐induced activity restriction has been proposed as a general explanatory mechanism for recent population extinctions in lizards, and has been used to forecast future extinction. Here, I test this hypothesis using globally applied biophysical calculations of the effects of warming and shade reduction on potential activity time and whole‐life‐cycle energy budgets. These ‘thermodynamic niche’ analyses show that activity restriction from climate warming is unlikely to provide a general explanation of recent extinctions, and that loss of shade is viable alternative explanation. Climate warming could cause population declines, even under increased activity potential, through joint impacts on fecundity and mortality rates. However, such responses depend strongly on behaviour, habitat (shade, food) and life history, all of which should be explicitly incorporated in mechanistic forecasts of extinction risk under climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号