首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3437篇
  免费   686篇
  国内免费   555篇
  4678篇
  2024年   30篇
  2023年   173篇
  2022年   149篇
  2021年   214篇
  2020年   279篇
  2019年   327篇
  2018年   226篇
  2017年   250篇
  2016年   244篇
  2015年   218篇
  2014年   290篇
  2013年   290篇
  2012年   226篇
  2011年   228篇
  2010年   150篇
  2009年   202篇
  2008年   166篇
  2007年   168篇
  2006年   129篇
  2005年   102篇
  2004年   85篇
  2003年   73篇
  2002年   66篇
  2001年   43篇
  2000年   44篇
  1999年   37篇
  1998年   28篇
  1997年   31篇
  1996年   30篇
  1995年   22篇
  1994年   28篇
  1993年   13篇
  1992年   24篇
  1991年   13篇
  1990年   14篇
  1989年   15篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   4篇
  1981年   7篇
  1980年   3篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有4678条查询结果,搜索用时 15 毫秒
101.
Aim Species distribution models and geographical information system (GIS) technologies are becoming increasingly important tools in conservation planning and decision‐making. Often the rich data bases of museums and herbaria serve as the primary data for predicting species distributions. Yet key assumptions about the primary data often are untested, and violation of such assumptions may have consequences for model predictions. For example, users of primary data assume that sampling has been random with respect to geography and environmental gradients. Here we evaluate the assumption that plant voucher specimens adequately sample the climatic gradient and test whether violation of this assumption influences model predictions. Location Bolivia and Ecuador. Methods Using 323,711 georeferenced herbarium collections and nine climatic variables, we predicted the distribution of 76 plant species using maximum entropy models (MAXENT) with training points that sampled the climate environments randomly and training points that reflected the climate bias in the herbarium collections. To estimate the distribution of species, MAXENT finds the distribution of maximum entropy (i.e. closest to uniform) subject to the constraint that the expected value for each environmental variable under the estimated distribution matches its empirical average. The experimental design included species that differed in geographical range and elevation; all species were modelled with 20 and 100 training points. We examined the influence of the number of training points and climate bias in training points, elevation and range size on model performance using analysis of variance models. Results We found that significant parts of the climatic gradient were poorly represented in herbarium collections for both countries. For the most part, existing climatic bias in collections did not greatly affect distribution predictions when compared with an unbiased data set. Although the effects of climate bias on prediction accuracy were found to be greater where geographical ranges were characterized by high spatial variation in the degree of climate bias (i.e. ranges where the bias of the various climates sampled by collections deviated considerably from the mean bias), the greatest influence on model performance was the number of presence points used to train the model. Main conclusions These results demonstrate that predictions of species distributions can be quite good despite existing climatic biases in primary data found in natural history collections, if a sufficiently large number of training points is available. Because of consistent overprediction of models, these results also confirm the importance of validating models with independent data or expert opinion. Failure to include independent model validation, especially in cases where training points are limited, may potentially lead to grave errors in conservation decision‐making and planning.  相似文献   
102.
The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.  相似文献   
103.
Abstract Passerine birds living on islands are usually larger than their mainland counterparts, in terms of both body size and bill size. One explanation for this island rule is that shifts in morphology are an adaptation to facilitate ecological niche expansion. In insular passerines, for instance, increased bill size may facilitate generalist foraging because it allows access to a broader range of feeding niches. Here we use morphologically and ecologically divergent races of white-eyes (Zosteropidae) to test three predictions of this explanation: (1) island populations show a wider feeding niche than mainland populations; (2) island-dwelling populations are made up of individual generalists; and (3) within insular populations there is a positive association between size and degree of foraging generalism. Our results provide only partial support for the traditional explanation. In agreement with the core prediction, island populations of white-eye do consistently display a wider feeding niche than comparative mainland populations. However, observations of individually marked birds reveal that island-dwelling individuals are actually more specialized than expected by chance. Additionally, neither large body size nor large bill size are associated with generalist foraging behavior per se. These latter results remained consistent whether we base our tests on natural foraging behavior or on observations at an experimental tree, and whether we use data from single or multiple cohorts. Taken together, our results suggest that generalist foraging and niche expansion are not the full explanation for morphological shifts in island-dwelling white-eyes. Hence, we review briefly five alternative explanations for morphological divergence in insular populations: environmental determination of morphology, reduced predation pressure, physiological optimization, limited dispersal, and intraspecific dominance.  相似文献   
104.
105.
In West Africa, lineage splitting between the M and S molecular forms of the major Afro-tropical malaria mosquito, Anopheles gambiae (Diptera: Culicidae), is thought to be driven by ecological divergence, occurring mainly at the larval stage. Here, we present evidence for habitat segregation between the two molecular forms in and around irrigated rice fields located within the humid savannahs of western Burkina Faso. Longitudinal sampling of adult mosquitoes emerging from a range of breeding sites distributed along a transect extending from the heart of the rice field area into the surrounding savannah was conducted from June to November 2009. Analysis revealed that the two molecular forms and their sibling species Anopheles arabiensis are not randomly distributed in the area. A major ecological gradient was extracted in relation to the perimeter of the rice fields. The M form was associated with larger breeding sites mostly consisting of rice paddies, whereas the S form and An. arabiensis were found to depend upon temporary, rain-filled breeding sites. These results support hypotheses about larval habitat segregation and confirm the suggestion that the forms have different larval habitat requirements. Segregation appears to be clearly linked to anthropogenic permanent habitats and the community structure they support.  相似文献   
106.
The social niche specialization hypothesis predicts that group‐living animals should specialize in particular social roles to avoid social conflict, resulting in alternative life‐history strategies for different roles. Social niche specialization, coupled with role‐specific life‐history trade‐offs, should thus generate between‐individual differences in behaviour that persist through time, or distinct personalities, as individuals specialize in particular nonoverlapping social roles. We tested for support for the social niche specialization hypothesis in cooperative personality traits in wild female meerkats (Suricata suricatta) that compete for access to dominant social roles. As cooperation is costly and dominance is acquired by heavier females, we predicted that females that ultimately acquired dominant roles would show noncooperative personality types early in life and before and after role acquisition. Although we found large individual differences in repeatable cooperative behaviours, there was no indication that individuals that ultimately acquired dominance differed from unsuccessful individuals in their cooperative behaviour. Early‐life behaviour did not predict social role acquisition later in life, nor was cooperative behaviour before and after role acquisition correlated in the same individuals. We suggest that female meerkats do not show social niche specialization resulting in cooperative personalities, but that they exhibit an adaptive response in personality at role acquisition.  相似文献   
107.
Beyond their widespread application as genome-editing and regulatory tools, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) systems also play a critical role in nucleic acid detection due to their high sensitivity and specificity. Recently developed Cas family effectors have opened the door to the development of new strategies for detecting different types of nucleic acids for a variety of purposes. Precise and efficient nucleic acid detection using CRISPR-Cas systems has the potential to advance both basic and applied biological research. In this review, we summarize the CRISPR-Cas systems used for the recognition and detection of specific nucleic acids for different purposes, including the detection of genomic DNA, nongenomic DNA, RNA, and pathogenic microbe genomes. Current challenges and further applications of CRISPR-based detection methods will be discussed according to the most recent developments.  相似文献   
108.
Global climate change affects the distributions of ectotherms and may be the cause of several conservation problems, such as great displacement of climatic suitable spaces for species and, consequently, important reductions of the extent of liveable places, threatening the existence of many of them. Species exposure (and hence vulnerability) to global climate change is linked to features of their climatic niches (such as the relative position of the inhabited localities of each species in the climatic space), and therefore to characteristics of their geographic ranges (such as the extent of the distributions or altitudinal range inhabited by the species). In order to analyze the pattern of response of Argentine reptiles to global climate change, we ran phylogenetic generalized least squares models using species exposure to global climate change as a response variable, and (i) niche properties (breadth and position of the species in the climate space) and (ii) general features of the distribution of species (maximum latitude, altitudinal range, maximum elevation, distributional range and proximity to the most important dispersal barrier) as predictors. Our results suggest that the best way to explain climate change exposure is by combining breadth and position of climatic niche of the species or combining geographic features that are indicators of both niche characteristics. Our best model shows that in our study area, species with the narrowest distributional ranges that also inhabit the highest elevations are the most exposed to the effects of global climate change. In this sense, reptile species from Yungas, Puna and Andes ecoregions could be especially vulnerable to the effects of climate change. We believe that these types of models may represent an interesting tool for determining species and places particularly threatened by the effects of global climate change, which should be strongly considered in conservation planning.  相似文献   
109.
Aim To test the abundant centre hypothesis by analysing the physical and climatic factors that influence body size variation in the European badger (Meles meles). Location Data were compiled from 35 locations across Europe. Methods We used body mass, body length and condylo‐basal length (CBL) as surrogates of size. We also compiled data on latitude, several climatic variables, habitat type and site position relative to the range edge. We collapsed all continuous climatic variables into independent vectors using principal components analysis (PCA), and used a general linear model to explain the morphometric variation in badger populations across the species’ range. Results Body mass and body length were nonlinearly and significantly related to latitude. In contrast, CBL was linearly related to latitude. Body mass changed nonlinearly along the temperature (PC1) gradient, with the highest values observed at mid‐range. Furthermore, body mass, body length and CBL differed significantly among habitats, with badgers showing larger size in temperate habitats and core areas relative to peripheral zones. Main conclusions Our analysis supports the nonlinear pattern predicted by the abundant centre hypothesis only for body mass and body length. These results imply that individuals are largest and heaviest at the centre of the climatic range of badger distribution. Variation of CBL with latitude follows a linear trend, consistent with Bergmann’s rule. Our results provide mixed support for the abundant centre hypothesis, and suggest food availability/quality to be the main mechanism underlying body size clines in this species.  相似文献   
110.
Increasing evidence has emerged for non-random spatial distributions of microbes, but knowledge of the processes that cause variation in microbial assemblage among ecosystems is lacking. For instance, some studies showed that deterministic processes such as habitat specialization are important, while other studies hold that bacterial communities are assembled by stochastic forces. Here we examine the relative influence of deterministic and stochastic processes for bacterial communities from subsurface environments, stream biofilm, lake water, lake sediment and soil using pyrosequencing of the 16S ribosomal RNA gene. We show that there is a general pattern in phylogenetic signal in species ecological niches across recent evolutionary time for all studied habitats, enabling us to infer the influences of community assembly processes from patterns of phylogenetic turnover in community composition. The phylogenetic dissimilarities among-habitat types were significantly higher than within them, and the communities were clustered according to their original habitat types. For communities within-habitat types, the highest phylogenetic turnover rate through space was observed in subsurface environments, followed by stream biofilm on mountainsides, whereas the sediment assemblages across regional scales showed the lowest turnover rate. Quantifying phylogenetic turnover as the deviation from a null expectation suggested that measured environmental variables imposed strong selection on bacterial communities for nearly all sample groups. For three sample groups, spatial distance reflected unmeasured environmental variables that impose selection, as opposed to spatial isolation. Such characterization of spatial and environmental variables proved essential for proper interpretation of partial Mantel results based on observed beta diversity metrics. In summary, our results clearly indicate a dominant role of deterministic processes on bacterial assemblages and highlight that bacteria show strong habitat associations that have likely emerged through evolutionary adaptation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号