首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   51篇
  国内免费   414篇
  2024年   8篇
  2023年   24篇
  2022年   29篇
  2021年   32篇
  2020年   36篇
  2019年   50篇
  2018年   33篇
  2017年   34篇
  2016年   54篇
  2015年   36篇
  2014年   32篇
  2013年   32篇
  2012年   35篇
  2011年   39篇
  2010年   43篇
  2009年   29篇
  2008年   32篇
  2007年   31篇
  2006年   36篇
  2005年   39篇
  2004年   30篇
  2003年   33篇
  2002年   20篇
  2001年   23篇
  2000年   24篇
  1999年   11篇
  1998年   8篇
  1997年   18篇
  1996年   16篇
  1995年   13篇
  1994年   7篇
  1993年   13篇
  1992年   14篇
  1991年   8篇
  1990年   11篇
  1989年   13篇
  1988年   7篇
  1987年   7篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1983年   1篇
  1982年   7篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1974年   1篇
排序方式: 共有993条查询结果,搜索用时 15 毫秒
61.
There was little release of extractable SO4-S during four weeks from CS2 applied by injecting into two S-deficient soils. In this incubation experiment, the rate of CS2 was 30 μg S g, placement was injection at 9 cm depth, soil temperature was 20°C, and soil moisture tension was 33 kPa. The yield of barley forage after seven weeks in the greenhouse showed only small increases from 10 or 30 μg S g−1 of CS2 as compared to Na2SO4, on the two soils. While CS2 supplied little plant available S in the short term, it was an effective inhibitor of nitrification. In the laboratory, or in the field, the injection of CS2 (with N fertilizers) at a point 9 cm into the soils either stopped or reduced nitrification. In one laboratory experiment, 35 μg of CS2 g−1 of soil with urea reduced nitrification for at least four weeks; and in another experiment 20 μg of CS2 g−1 of soil with aqua NH3 nearly or completely inhibited nitrification at 20 days. In two field experiments, 3 and 12 μg of CS2 g−1 of soil (or 6 and 24 kg ha−1) with aqua NH3 inhibited nitrification from October to the subsequent May. In addition, CS2 reduced the amount of ammonium produced from the soil N, both in these two field experiments and in the laboratory experiments. That is to say, CS2 injected at a point, inhibited both nitrification and ammonification. In other field experiments, CS2 at a rate of 10 kg ha−1 was injected in bands 9 cm deep with urea in October, and by May there was still reduced nitrification. Less than half of the fall-applied urea alone was recovered as mineral N, but with the application of CS2 the recovery was increased to three-quarters. The yield and N uptake of barley grain was increased where fall-applied banded urea or aqua NH3 received banded CS2, (NH4)2CS3, or K2CS3. The average increase in yield from fall-applied fertilizer, from inhibitor with fall-applied fertilizer, and from spring-applied fertilizer was 800, 1370, and 1900 kg ha−1, respectively. In the same order, the apparent % recovery of fertilizer N in grain was 24, 42, and 60.  相似文献   
62.
63.
Bøckman  O.C. 《Plant and Soil》1997,194(1-2):11-14
Biological nitrogen fixation (BNF) has an assured place in agriculture, mainly as a source of nitrogen for legumes. Legumes are currently grown mostly as a source of vegetable oil and as food for humans and animals, but not as nitrogen source.Other crops with BNF capability may be eventually be developed eventually. Such crops will also need mineral fertilizers to maintain a good status of soil nutrients, but their possible effects to the environment is also a concern. Fertilizers, however, will remain a necessary and sustainable input to agriculture to feed the present and increasing human population. It is not a case of whether BNF is better or worse than mineral fertilizers because both plays an important role in agriculture.  相似文献   
64.
J. Hassink 《Plant and Soil》1995,175(2):159-166
I tested whether the non-fertilizer N supply of grassland soils (NFNS; N uptake on unfertilized plots) affects the relationships between N uptake and dry matter production, N application and N uptake, N application and dry matter production, as well as the optimum fertilizer application rate.At low N uptake rates the amount of dry matter production per kg of N uptake was negatively correlated with NFNS; at higher N uptake levels the correlation was not significant. The apparent nitrogen recovery of fertilizer N was not correlated with NFNS. The optimum fertilizer application rate was correlated positively with the maximum dry matter production (Max DM) and negatively with NFNS. The relationship optimum fertilizer application = –81–0.8 × NFNS + 0.0375 × Max DM accounted for 89% of the variance in optimum fertilizer application rate between soils at a marginal N effect of 7.5 kg dry matter per kg N applied. So an increase in NFNS of 100 kg N resulted in a decrease of the optimum N application rate of 80 kg N.  相似文献   
65.
Summary A 16-plot experimental field was established in 1975 on a clay soil in Jokioinen, Finland. The water discharge through tile drains was measured and its ammonium and nitrate N contents determined for each plot separately. The surface runoff was also measured and analysed. The annual runoff and the N leached from the surface of moderately fertilized (100 kg/ha/y N) cereal plots varied during 1976–1982 from 21 to 301 mm and from 2 to 7 kg/ha, respectively. The discharge of water and leaching of N through subdrains varied from 65 to 225 mm and from 1 to 38 kg/ha, respectively. The highest leaching was probably caused by a previous fallow. The annual N uptake by the crop varied between 41 and 122 kg/ha.Of the fertilizer-N used for cereals, 20% of that applied in the autumn was lost, but only 1 to 4 per cent was lost when applied in the spring. There was much less N leaching from ley than from barley plots, although the former was given twice as much N. The rate of N fertilization had only a very slight effect on N leaching from both ley and barley plots.The results were compared with those obtained in lysimeters filled with clay, silt, sand and peat soils. No definite conclusions can be drawn because the lysimeter experimental data are only for the first year.  相似文献   
66.
67.
68.
In the present study, we investigated the effects of inorganic nitrogen sources—(NPK fertilizer, 15:15:15), (urea fertilizer, 46:0:0), (NH4)2SO4 as well as monitored natural attenuation on the bioremediation of diesel-polluted soil. At the end of the 6-week study, the highest degradation was recorded in soil amended with NPK fertilizer (95 ± 2.77%) while the least total petroleum hydrocarbon removal was observed in monitored natural attenuation (89 ± 2.91%). Nth-order kinetics effectively described three of the treatments out of the four treatment plans. These include urea amendment (r2 = 0.9925, average relative error (ARE) = 1.45%, root mean square error (RMSE) = 0.038, kn = (3.57 ± 0.61) × 10?2, n = 1.33), NPK fertilizer amendment (r2 = 0.9751, ARE = 3.241%, RMSE = 0.086, kn = (8.04 ± 0.23) × 10?1, n = 0.74), and monitored natural attenuation (r2 = 0.9697, ARE = 2.77%, RMSE = 0.073, kn = (1.57 ± 0.50) × 10?2, n = 1.16). The values of n from the nth-order kinetics parameter estimation indicated that all the treatments resulted in diesel degradation that followed a first-order kinetics path. Thus, the outcome of kinetic modeling showed that nth-order can be used as validating tool when many kinetic orders are under consideration. The phytotoxicity assay with Zea mays showed that the treatments plans resulted in germination indices of 17–55%.  相似文献   
69.
以降香黄檀(Dalbergia odorifera T. Chen)为材料,分析不同移植方式和外施钾肥等培育措施对其光合参数和叶绿素(Chl)含量的影响。结果显示,断根处理后植物的最大净光合速率(Pnmax)比去冠、全冠移、对照(CK)和去冠移4种处理方式分别提高了19.25%、34.79%、40.88%和219.86%。光合参数分析结果显示,光饱和点(LSP)最高的为去冠处理,光补偿点(LCP)最高的为断根处理。断根处理后植物的净光合速率(Pn)和蒸腾速率(Tr)最大。断根、去冠、全冠移3种处理的Chla、Chlb、Chl(a+b)含量及胡萝卜素均高于CK,且断根处理后上述各指标达到最高值。外施钾肥处理中,降香黄檀最大净光合速率随钾肥用量的增加而增加,K2处理下的LSP值最大。随着钾肥施用量的增加,植物叶片的Pn、气孔导度呈上升的趋势,且植株的Chla、Chlb和Chl(a+b)含量均随钾肥用量的增加而增加,CK处理下Chla/Chlb比值显著高于K1、K2处理。研究结果表明断根、去冠、施用钾肥等处理均可显著提升降香黄檀叶片的叶绿素含量,有利于植株进行光合作用,促进生长发育。  相似文献   
70.
In recent years, biochar has been discussed as an opportunity for carbon sequestration in arable soils. Field experiments under realistic conditions investigating the CO2 emission from soil after biochar combined with fertilizer additions are scarce. Therefore, we investigated the CO2 emission and its 13C signature after addition of compost, biogas digestate (originating from C4 feedstock) and mineral fertilizer with and without biochar (0, 3, 10, 40 Mg biochar/ha) to a sandy Cambisol in Northern Germany. Biomass residues were pyrolized at ~650°C to obtain biochar with C3 signature. Gas samples were taken biweekly during the growing season using static chambers three years after biochar substrate addition. The CO2 concentration and its δ13C isotope signature were measured using a gas chromatograph coupled to an isotope ratio mass spectrometer. Results showed increased CO2 emission (30%–60%) when high biochar amount (40 Mg/ha) was applied three years ago together with mineral fertilizer and biogas digestate. On average, 59% of the emitted CO2 had a C3 signature (thus, deriving from biochar and/or soil organic matter), independent of the amount of biochar added. In addition, our results clearly demonstrated that only a small amount of released CO2 derived from biochar. The results of this field experiment suggest that biochar most likely stimulates microbial activity in soil leading to increased CO2 emissions derived from soil organic matter and fertilizers mineralization rather than from biochar. Nevertheless, compared to the amount of carbon added by biochar, additional CO2 emission is marginal corroborating the C sequestration potential of biochar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号