首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2106篇
  免费   139篇
  国内免费   40篇
  2024年   4篇
  2023年   57篇
  2022年   48篇
  2021年   76篇
  2020年   47篇
  2019年   72篇
  2018年   66篇
  2017年   43篇
  2016年   55篇
  2015年   69篇
  2014年   91篇
  2013年   133篇
  2012年   81篇
  2011年   93篇
  2010年   92篇
  2009年   85篇
  2008年   97篇
  2007年   117篇
  2006年   84篇
  2005年   92篇
  2004年   95篇
  2003年   88篇
  2002年   89篇
  2001年   87篇
  2000年   52篇
  1999年   38篇
  1998年   40篇
  1997年   35篇
  1996年   42篇
  1995年   35篇
  1994年   32篇
  1993年   26篇
  1992年   33篇
  1991年   17篇
  1990年   6篇
  1989年   14篇
  1988年   9篇
  1987年   7篇
  1986年   4篇
  1985年   4篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1977年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2285条查询结果,搜索用时 109 毫秒
31.
《遗传学报》2023,50(2):63-76
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six “core” proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left–right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal–distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.  相似文献   
32.
Hemolymph of adultAplysia californica significantly affects neurite outgrowth of identified neurons of the land snailHelix pomatia. The metacerebral giant cell (MGC) and the motoneuron C3 from the cerebral ganglion and the neuron B2 from the buccal ganglion ofH. pomatia were isolated by enzymatic and mechanical dissociation and plated onto poly-l-lysine-coated dishes either containing culture medium conditioned byHelix ganglia, or pre-treated withAplysia hemolymph. To determine the extent of neuronal growth we measured the neurite elongation and the neuritic field of cultured neurons at different time points.Aplysia hemolymph enhances the extent and rate of linear outgrowth and the branching domain ofHelix neurons. With the hemolymph treatment the MGC neuron more consistently forms specific chemical synapses with its follower cell B2, and these connections are more effective than those established in the presence of the conditioned medium.  相似文献   
33.
Summary 1. Two LHRH neuronal cell lines were developed by targeted tumorigenesis of LHRH neuronsin vivo. These cell lines (GN and GT-1 cells) represent a homogeneous population of neurons. GT-1 cells have been further subcloned to produce the GT1-1, GT1-3, and GT1-7 cell lines. While considerable information is accumulating about GT-1 cells, very little is currently known about the characteristics and responses of GN cells.2. By both morphological and biochemical criteria, GT-1 cells are clearly neurons. All GT-1 cells immunostain for LHRH and the levels of prohormone, peptide intermediates, and LHRH in the cells and medium are relatively high.3. GT-1 cells biosynthesize, process, and secrete LHRH. Processing of pro-LHRH appears to be very similar to that reported for LHRH neuronsin vivo. At least four enzymes may be involved in processing the prohormone to LHRH.4. LHRH neurons are unique among the neurons of the central nervous system because they arise from the olfactory placode and grow back into the preoptic-anterior hypothalamic region of the brain. Once these neurons reach this location, they send their axons to the median eminence. With respect to the immortalized neurons, GN cells were arrested during their transit to the brain. In contrast, GT-1 cells were able to migrate to the preoptic-anterior hypothalamic region but were unable correctly to target their axons to the median eminence. These problems in migration and targeting appear to be due to expression of the simian virus T-antigen.5. While GT-1 cells are a homogeneous population of neurons, they are amenable to coculture with other types of cells. Coculture experiments currently under way should help not only to reveal some of the molecular and cellular cues that are important for neuronal migration and axonal targeting, but they should also highlight the nature of the cellular interactions which normally occurin situ.6. GT-1 cells spontaneously secrete LHRH in a pusatile manner. The interpulse interval for LHRH from these cells is almost identical to that reported for release of LH and LHRHin vivo. GT-1 cells are interconnected by both gap junctions and synapses. The coordination and synchronization of secretion from these cells could occur through these interconnections, by feedback from LHRH itself, and/or by several different compounds that are secreted by these cells. One such compound is nitric oxide.7. GT-1 cells have Na+, K+, Ca2+, and Cl channels. Polymerase chain reaction experiments coupled with Southern blotting and electrophysiological recordings reveal that GT-1 cells contain at least five types of Ca2+ channels. R-type Ca2+ channels appear to be the most common type of channel and this channel is activated by phorbol esters in the GT-1 cells.8. LHRH is secreted from GT-1 cells in response to norepinephrine, dopamine, histamine, GABA (GABA-A agonists), glutamate, nitric oxide, neuropeptide Y, endothelin, prostaglandin E2, and activin A. Phorbol esters are very potent stimulators of LHRH secretion. Inhibition of LHRH release occurs in response to LHRH, GABA (GABA-B agonists), prolactin, and glucocorticoids.9. Compared to secretion studies, far fewer agents have been tested for their effects on gene expression. All of the agents which have been tested so far have been found either to repress LHRH gene expression or to have no effect. The agents which have been reported to repress LHRH steady-state mRNA levels include LHRH, prolactin, glucocorticoids, nitric oxide, and phorbol esters. While forskolin stimulates LHRH secretion, it does not appear to have any effect on LHRH mRNA levels.  相似文献   
34.
We examined by morphological methodology the effect of (S)-N-ethyl-3-[(1-dimethyl-amino)ethyl]-N-methyl-phenylcarbamate hydrogentartrate (ENA-713), an acetylcholinesterase (AChE) inhibitor, on ischemia-induced neuronal death in the gerbil hippocampus due to a 5-min ligation of bilateral common carotid arteries after light ether anesthesia. Pyramidal cells had been decreased to 27% of sham-operated controls and the number of hypertrophic astrocytes expressing glial fibrillary acidic protein (GFAP) markedly increased in the hippocampal CA1 subfield 14 days after ischemia. However, post-ischemic administration of ENA-713 (three times 0.2 mg/kg, i.p.) significantly ameliorated this ischemia-induced decrease in the number of pyramidal cells by 47% of sham-operated controls, furthermore, it reduced the ischemia-induced accumulation of GFAP-positive astrocyte in the CA1 region. Together with previous results showing that ENA-713 protected against the ischemia-induced cholinergic abnormalities in the gerbil brain and improved cholinergic dysfunctions in the senescent rat brain, our present findings suggest that ENA-713 prove to be useful for treatment with senile dementia such as cerebrovascular dementia.  相似文献   
35.
Neuropeptide messenger plasticity in the CNS neurons following axotomy   总被引:2,自引:0,他引:2  
Neuronal peptides exert neurohormonal and neurotransmitter (neuromodulator) functions in the central nervous system (CNS). Besides these functions, a group of neuropeptides may have a capacity to create cell proliferation, growth, and survival. Axotomy induces transient (1–21 d) upregulation of synthesis and gene expression of neuropeptides, such as galanin, corticotropin releasing factor, dynorphin, calcitonin gene-related peptide, vasoactive intestinal polypeptide, cholecystokinin, angiotensin II, and neuropeptide Y. These neuropeptides are colocalized with “classic” neurotransmitters (acetylcholine, aspartate, glutamate) or neurohormones (vasopressin, oxytocin) that are downregulated by axotomy in the same neuronal cells. It is more likely that neuronal cells, in response to axotomy, increase expression of neuropeptides that promote their survival and regeneration, and may downregulate substances related to their transmitter or secretory activities.  相似文献   
36.
While the dietary importance of proteins, essential fatty acids, vitamins and trace elements has been well recognised, the role of shadow nutrients, a class of metabolites, which are biosynthesized in the body and serve vital functions, such as lipoic acid, choline, inositol, taurine and carnitine, has not been adequately appreciated. There are reasons to believe that during infancy and in ageing, biosynthesis of these metabolites may be limited. The objective of this review is to highlight the essentiality of these nutrients and the need for their supplementation in the diets of infants and in elderly people. Provision of shadow nutrients where the necessary biosynthetic machinery might not have developed to full stature or might have slowed down, is a new concept in nutrition which needs attention.  相似文献   
37.
The cross-immunoreactivity, topography, and fiber projections of the alpha MSH-immunoreactive specific neurons in the forebrain of the rat appear to be distinctly different from that of the neurons in the hypothalamic arcuate opiocortin system. The cell bodies, immunoreactive only to -MSH, have a specific pattern of distribution in the dorsal and lateral hypothalamic regions from the level of the retrochiasmatic region to the premammillary area of the posterior hypothalamus. Immunoreactive fibers of these cells appear to extend into regions of the cerebral cortex and hippocampus. An antomical relationship between the immunostained fibers and/or terminals of the arcuate opiocortin pool of neurons and the -MSH-immunoreactive perikarya is described utilizing the ABC (Avidin-Biotin-Peroxidase Complex) and ABC-GO (Glucose Oxidase) or glucose oxidase-antiglucose oxidase complex methods of immunocytochemistry in which two tissue antigens with contrasting colors are demonstrated in the same tissue section.  相似文献   
38.
(1) A synaptosomal fraction obtained from locust nervous tissue has been shown to possess an active γ-aminobutyric acid transport mechanism. This activity is preserved and even enriched by the membrane vesicles derived from osmotically shocked synaptosomes. (2) Electron-microscopy examination indicates that the above membrane vesicles are derived predominantly from the neuronal plasma membrane and are devoid of any internal cellular organelles and components. Active transport of γ-aminobutyric acid into these vesicles has been demonstrated with artificially imposed ion gradients as the sole energy source. (3) γ-Aminobutyric acid transport can be driven by an Na+ gradient (out>in) and /or by a gradient of Cl? (out>in). This process is absolutely dependent on the simultaneous presence of both types of ion in the external medium. The stimulation of the process by valinomycin indicates that γ-aminobutyric acid transport is an electrogenic process which is stimulated by a membrane potential (interior negative).  相似文献   
39.
Summary To optimize culture conditions and gain a more reliable culturing system for studies of metabolic properties of neuronal cells, a simplified perfusion chamber was developed. It consists of two parts: a perfusion block and a standard plastic culture dish. To confirm the suitability of this chamber for continuous culturing of anchorage-dependent cells, the growth and morphology of the four neuronal cell lines glioma C6 and glioma 138MG, neuroblastoma C1300, clones N1E115 and N18 were followed for 4 d using both traditional and perfusion techniques. A marked increase in growth and a decrease in the degree of morphological differentiation were obtained with the latter technique compared to the former. This work was supported by grants from the National Swedish Board for Technical Development (Grant 81-5009), the Swedish Work Environmental Foundation (Grant 76-53), and Ollie and Elof Ericssons Foundation for Scientific Research.  相似文献   
40.
Metabolic tolerance of low intracellular pH (pH(i)) was studied in well-oxygenated, perfused, neonatal, rat cerebrocortical brain slices (350 microns thick) by inducing severe hypercapnia. In each of 17 separate experiments 80 brain slices (approximately 3.2 g wet weight) were suspended in an NMR tube, perfused with artificial CSF (ACSF), and studied at 4.7 T with 31P and 1H NMR spectroscopy. Spectra obtained every 5 min monitored relative concentrations of lactate or high-energy phosphate metabolites, from which pH(i) and extracellular pH were determined. Unperturbed slice preparations were metabolically stable for > 10 h, with no significant changes occurring in pHi, ATP, phosphocreatine (PCr), inorganic phosphate, or lactate. Different levels of hypercapnia were produced by sequentially perfusing slices with the following different ACSF batches, each having previously been equilibrated with a specific mixture of CO2 in oxygen: (a) 10% CO2, 15 min of perfusion; (b) 30% CO2, 15 min of perfusion; (c) 50% CO2, 15 min of perfusion; (d) 70% CO2, 30 min of perfusion; (e) 50% CO2, 15 min of perfusion; (f) 30% CO2, 15 min of perfusion; and (g) 10% CO2, 15 min of perfusion. At the completion of this protocol slices were again perfused with fresh ACSF that was equilibrated with a 95% O2/5% CO2 gas mixture. In each of five separate 1H and 31P experiments, brain slices were recovered within 2 h after termination of exposure to high CO2. The pHi was determined from measurements of the chemical shift difference between phosphoethanolamine and PCr, using a calibration curve obtained for our preparation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号