全文获取类型
收费全文 | 2106篇 |
免费 | 144篇 |
国内免费 | 40篇 |
专业分类
2290篇 |
出版年
2024年 | 6篇 |
2023年 | 58篇 |
2022年 | 50篇 |
2021年 | 76篇 |
2020年 | 47篇 |
2019年 | 72篇 |
2018年 | 66篇 |
2017年 | 43篇 |
2016年 | 55篇 |
2015年 | 69篇 |
2014年 | 91篇 |
2013年 | 133篇 |
2012年 | 81篇 |
2011年 | 93篇 |
2010年 | 92篇 |
2009年 | 85篇 |
2008年 | 97篇 |
2007年 | 117篇 |
2006年 | 84篇 |
2005年 | 92篇 |
2004年 | 95篇 |
2003年 | 88篇 |
2002年 | 89篇 |
2001年 | 87篇 |
2000年 | 52篇 |
1999年 | 38篇 |
1998年 | 40篇 |
1997年 | 35篇 |
1996年 | 42篇 |
1995年 | 35篇 |
1994年 | 32篇 |
1993年 | 26篇 |
1992年 | 33篇 |
1991年 | 17篇 |
1990年 | 6篇 |
1989年 | 14篇 |
1988年 | 9篇 |
1987年 | 7篇 |
1986年 | 4篇 |
1985年 | 4篇 |
1984年 | 7篇 |
1983年 | 4篇 |
1982年 | 6篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1977年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有2290条查询结果,搜索用时 15 毫秒
11.
12.
Jaswinder Sharma Geetha Nelluru Mary Ann Wilson Michael V Johnston Mir Ahamed Hossain 《ASN neuro》2011,3(2)
Neuronal death pathways following hypoxia–ischaemia are sexually dimorphic, but the underlying mechanisms are unclear. We examined cell death mechanisms during OGD (oxygen-glucose deprivation) followed by Reox (reoxygenation) in segregated male (XY) and female (XX) mouse primary CGNs (cerebellar granule neurons) that are WT (wild-type) or Parp-1 [poly(ADP-ribose) polymerase 1] KO (knockout). Exposure of CGNs to OGD (1.5 h)/Reox (7 h) caused cell death in XY and XX neurons, but cell death during Reox was greater in XX neurons. ATP levels were significantly lower after OGD/Reox in WT-XX neurons than in XY neurons; this difference was eliminated in Parp-1 KO-XX neurons. AIF (apoptosis-inducing factor) was released from mitochondria and translocated to the nucleus by 1 h exclusively in WT-XY neurons. In contrast, there was a release of Cyt C (cytochrome C) from mitochondria in WT-XX and Parp-1 KO neurons of both sexes; delayed activation of caspase 3 was observed in the same three groups. Thus deletion of Parp-1 shunted cell death towards caspase 3-dependent apoptosis. Delayed activation of caspase 8 was also observed in all groups after OGD/Reox, but was much greater in XX neurons, and caspase 8 translocated to the nucleus in XX neurons only. Caspase 8 activation may contribute to increased XX neuronal death during Reox, via caspase 3 activation. Thus, OGD/Reox induces death of XY neurons via a PARP-1-AIF-dependent mechanism, but blockade of PARP-1-AIF pathway shifts neuronal death towards a caspase-dependent mechanism. In XX neurons, OGD/Reox caused prolonged depletion of ATP and delayed activation of caspase 8 and caspase 3, culminating in greater cell death during Reox. 相似文献
13.
Atsushi Kawakami Takashi Kitsukawa Shin Takagi Hajime Fujisawa 《Developmental neurobiology》1996,29(1):1-17
Neuropilin (previously A5) is a cell surface glycoprotein that was originally identified in Xenopus tadpole nervous tissues. In Xenopus, neuropilin is expressed on both the presynaptic and postsynaptic elements in the visual and general somatic sensory systems, suggesting a role in neuronal cell recognition. In this study, we identified a mouse homologue of neuropilin and examined its expression in developing mouse nervous tissues. cDNA cloning and sequencing revealed that the primary structure of the mouse neuropilin was highly similar to that of Xenopus and that the extracellular segment of the molecule possessed several motifs that were expected to be involved in cell-cell interaction. Immunohistochemistry and in situ hybridization analyses in mice indicated that the expression of neuropilin was restricted to particular neuron circuits. Neuropilin protein was localized on axons but not on the somata of neurons. The expression of neuropilin persisted through the time when axons were actively growing to form neuronal connections. These observations suggest that neuropilin is involved in growth, fasciculation, and targeting for a particular groups of axons. © 1996 John Wiley & Sons, Inc. 相似文献
14.
15.
Ulf Soppa Julian Schumacher Victoria Florencio Ortiz Tobias Pasqualon Francisco Tejedor 《Cell cycle (Georgetown, Tex.)》2014,13(13):2084-2100
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome. 相似文献
16.
Shepard JA Stevans AC Holland S Wang CE Shikanov A Shea LD 《Biotechnology and bioengineering》2012,109(3):830-839
Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. 相似文献
17.
18.
Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition 总被引:11,自引:0,他引:11
The characteristics and multilineage differentiation potential of bone marrow mesenchymal stem cells (BM MSC) remain controversial. This study aimed to characterize human BM MSC isolated by plastic adherent or antibody selection and their neuronal differentiation potential using growth factors or chemical inducing agents. MSC were found to express low levels of neuronal markers: neurofilament-M, beta tubulin III, and neuron specific enolase. Under a serum- and feeder cell-free condition, basic fibroblast growth factor, epidermal growth factor, and platelet-derived growth factor induced neuronal morphology in MSC. In addition to the above markers, these cells expressed neurotransmitters or associated proteins: gamma-aminobutyric acid, tyrosine hydroxylase and serotonin. These changes were maintained for up to 3 months in all bone marrow specimens (N = 6). In contrast, butylated hydroxyanisole and dimethylsulfoxide were unable to induce sustained neuronal differentiation. Our results show that MSC isolated by two different procedures produced identical lineage differentiation with defined growth factors in a serum- and feeder cell-free condition. 相似文献
19.
Hur JY Lee P Kim H Kang I Lee KR Kim SY 《Biochemical and biophysical research communications》2004,313(4):948-953
Aster scaber T. (Asteraceae) has been used in traditional Korean and Chinese medicine to treat bruises, snakebites, headaches, and dizziness. (-)-3,5-Dicaffeoyl-muco-quinic acid (DQ) isolated from A. scaber induced neurite outgrowth in PC12 cells. It has been reported that the activation of the extracellular signal regulated kinase 1/2 (Erk 1/2) and phosphoinositide 3 (PI3) kinase plays a crucial role in the NGF-induced differentiation of PC12 cells. This study showed that the effect of DQ on neurite outgrowth is mediated via the Erk 1/2 and PI3 kinase-dependent pathways like NGF. Furthermore, DQ stimulated the phosphorylation of Trk A. Overall, DQ elicited the differentiation of PC12 cells through Trk A phosphorylation followed by Erk 1/2 and PI3 kinase activation. 相似文献
20.
Insulin-like growth factors: Putative muscle-derived trophic agents that promote motoneuron survival
Nicola T. Neff David Prevette Lucien J. Houenou Michael E. Lewis Marcie A. Glicksman Qin-Wei Yin Ronald W. Oppenheim 《Developmental neurobiology》1993,24(12):1578-1588
Treatment of chick embryos in ovo with IGF-I during the period of normal, developmentally regulated neuronal death (embryonic days 5–10) resulted in a dose-dependent rescue of a significant number of lumbar motoneurons from degeneration and death. IGF-II and two variants of IGF-I with reduced affinity for IGF binding proteins, des(1-3) IGF-I and long R3 IGF-I, also elicited enhanced survival of motoneurons equal to that seen in IGF-I-treated embryos. IGF-I did not enhance mitogenic activity in motoneuronal populations when applied to embryos during the period of normal neuronal proliferation (E2-5). Treatment of embryos with IGF-I also reduced two types of injury-induced neuronal death. Following either deafferentation or axotomy, treatment of embryos with IGF-I rescued approximately 75% and 50%, respectively, of the motoneurons that die in control embryos as a result of these procedures. Consistent with the survival-promoting activity on motoneurons in ovo, IGF-I, -II, and des(1-3) IGF-I elevated choline acetyltransferase activity in embryonic rat spinal cord cultures, with des (1-3) IGF-I demonstrating 2.5 times greater potency than did IGF-I. A single addition of IGF-I at culture initiation resulted in the maintenance of 80% of the initial ChAT activity for up to 5 days, during which time ChAT activity in untreated control cultures fell to 9%. In summary, these results demonstrate clear motoneuronal trophic activity for the IGFs. These findings, together with previous reports that IGFs are synthesized in muscle and may participate in motoneuron axonal regeneration and sprouting, indicate that these growth factors may have an important role in motoneuron development, maintenance, and recovery from injury. © 1993 John Wiley & Sons, Inc. 相似文献