首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7104篇
  免费   725篇
  国内免费   281篇
  2024年   22篇
  2023年   137篇
  2022年   158篇
  2021年   283篇
  2020年   371篇
  2019年   472篇
  2018年   335篇
  2017年   246篇
  2016年   268篇
  2015年   299篇
  2014年   353篇
  2013年   567篇
  2012年   312篇
  2011年   301篇
  2010年   290篇
  2009年   320篇
  2008年   350篇
  2007年   323篇
  2006年   287篇
  2005年   271篇
  2004年   253篇
  2003年   218篇
  2002年   215篇
  2001年   191篇
  2000年   123篇
  1999年   141篇
  1998年   122篇
  1997年   111篇
  1996年   84篇
  1995年   89篇
  1994年   75篇
  1993年   57篇
  1992年   63篇
  1991年   55篇
  1990年   39篇
  1989年   38篇
  1988年   36篇
  1987年   35篇
  1986年   25篇
  1985年   31篇
  1984年   25篇
  1983年   12篇
  1982年   26篇
  1981年   14篇
  1980年   13篇
  1979年   12篇
  1978年   6篇
  1977年   7篇
  1976年   9篇
  1974年   6篇
排序方式: 共有8110条查询结果,搜索用时 15 毫秒
991.
992.
993.
Cancer cell dissemination away from the primary tumor and their ability to form metastases remain the major causes of death from cancer. Understanding the molecular mechanisms triggering this event could lead to the design of new cancer treatments. The establishment and the maintenance of tissue architecture depend on the coordination of cell behavior within this tissue. Cell-cell interactions must form adhesive structures between neighboring cells while remaining highly dynamic to allow and control tissue renewal or remodeling. Among intercellular junctions, cadherin-based adherens junctions mediate strong physical interactions and transmit information from the cell microenvironment to the cytoplasm. Disruption of these cell-cell contacts perturbs the polarity of epithelial tissues leading to their disorganization and ultimately to aggressive carcinomas. In non-epithelial tissues, the role of cadherins in the development of cancer is still debated. We recently found that downregulation of N-cadherin in malignant glioma—the most frequent primary brain tumor—results in cell polarization defects leading to abnormal motile behavior with increased cell speed and decreased persistence in directionality. Re-expression of N-cadherin in glioma cells restores cell polarity and limits glioma cell migration, providing a potential therapeutic tool for diffuse glioma.  相似文献   
994.
In many Palaearctic wader species there is a clear separation in the timing of adult and juvenile southward migration. This phenomenon is traditionally explained by the selection on adults to depart early from breeding grounds and necessity of juveniles to prepare longer for migration. In this study we hypothesize that late departure from natal grounds may also be adaptive for juveniles, as it allows them to avoid intensified interference competition at stopover sites with adult, usually more dominant conspecifics. To test this hypothesis we analysed long-term data on stopover behaviour of juvenile wood sandpipers (Tringa glareola) staying at a central Polish stopover site under varying levels of competition from adult birds. The results clearly indicated that juveniles were highly disadvantaged by the simultaneous presence of adults at the same staging site, as under intense competition from older conspecifics they refuelled more slowly and attained lower fat reserves. It was also found that juveniles which were forced to compete with adults left the site quickly and possibly searched for more favourable staging places. All these imply that delayed departure from natal grounds may be adaptive for juvenile waders, allowing them to mismatch the timing of their first migration with the peak of adult passage and, thus, reduce the negative consequences of intraspecific competition during migration.  相似文献   
995.
3,3′‐Diindolylmethane (DIM) has been studied for its putative anti‐cancer properties, especially against prostate cancer; however, its exact mechanism of action remains unclear. We recently provided preliminary data suggesting down‐regulation of uPA during B‐DIM (a clinically active DIM)‐induced inhibition of invasion and angiogenesis in prostate cancer cells. Since the expression and activation of uPA plays important role in tumorigenicity, and high endogenous levels of uPA and uPAR are found in advanced metastatic cancers, we investigated their role in B‐DIM‐mediated inhibition of prostate cancer cell growth and motility. Using PC3 cells, we found that B‐DIM treatment as well as the silencing of uPA and uPAR by siRNAs led to the inhibition of cell growth and motility. Conversely, over‐expression of uPA/uPAR in LNCaP and C4‐2B cells resulted in increased cell growth and motility, which was effectively inhibited by B‐DIM. Moreover, we found that uPA as well as uPAR induced the production of VEGF and MMP‐9, and that the down‐regulation of uPA/uPAR by siRNAs or B‐DIM treatment resulted in the inhibition of VEGF and MMP‐9 secretion which could be responsible for the observed inhibition of cell migration. Interestingly, silencing of uPA/uPAR led to decreased sensitivity to B‐DIM indicating important role of uPA/uPAR in B‐DIM‐mediated regulation of prostate cancer cell growth and migration. Our data suggest that chemopreventive and/or therapeutic activity of B‐DIM is in part due to down‐regulation of uPA–uPAR leading to reduced production of VEGF/MMP‐9 which ultimately leads to the inhibition of cell growth and migration of aggressive prostate cancer cells. J. Cell. Biochem. 107: 516–527, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
996.
Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition 1,2. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells 1-3. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components 3. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration 4. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands 5-8. However, not until recently have any chemoattractants of trunk NCCs been identified 9. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is described elsewhere10). By exposing trunk NCCs at the periphery of the culture to a chemotactant gradient that is perpendicular to their predicted natural directionality, alterations in migratory polarity induced by the applied chemotactant gradient can be detected. This technique is inexpensive, requires the culturing of only two NT explants per replicate treatment, avoids harsh cell lifting (such as trypsinization), leaves trunk NCCs in a more similar distribution to in vivo conditions, cuts down the amount of time between explantation and experimentation (which likely reduces the risk of differentiation), and allows time-lapse evaluation of numerous migratory characteristics.  相似文献   
997.
Migratory ability of second-stage juveniles (J2) of two Meloidogyne chitwoodi races and a M. hapla population were compared in soil-filled columns at 12, 18, and 24 C. J2 of all populations migrated farthest at 18 C and least at 12 C. Nematode survival was significantly reduced (P = 0.05) at 24 C.M. chitwoodi J2 migrated further and in greater numbers than M. hapla J2 at all temperatures. A comparison with and without a host plant demonstrated no preferential migration toward the plant. Water percolation through the migration columns stimulated upward migration.  相似文献   
998.
999.
1000.
Reticulocalbin1 (RCN1) is implicated in tumorigenesis and tumour progression. However, whether RCN1-mediated bone metastasis of non-small cell lung cancer (NSCLC) cells was elusive. Here, we assessed the effect of osteoblast-conditioned medium (CM) on proliferation and migration of NSCLC cell line, NCI-H1299 and NCI-H460 cells, and identified the soluble mediators in CMs from osteoblasts and NSCLC cells using MTT, Clonogenicity, Transwell, wound healing, RT-PCR, and Western blotting assays, and LC-MS/MS analysis, respectively. Furthermore, the role of RCN1 was investigated in NSCLC cells cultured with or without osteoblast-CM. Tumour growth and bone resorption were measured in a nude mouse model bearing NCI-H1299 cells transduced with shRNA/RCN1 vector using in vivo imaging technique and micro-CT. The results showed that RCN1 with a higher abundance in osteoblast-CM, which was present in extracellular vesicles (EVs), enhanced RCN1 expression in NSCLC cells. Osteoblast-CM partially offset the inhibitory effect of RCN1 depletion on proliferation and migration of NSCLC cells. RCN1 depletion-induced endoplasmic reticulum (ER) stress caused by increasing GRP78, CHOP, IRE1α, p-IRE1α, p-PERK and p-JNK, which was positively regulated by self-induced autophagy, contributed to suppression of proliferation and migration in NCI-H1299 cells. Therefore, osteoblasts produced RCN1 to transfer into NSCLC cells partially through EVs, facilitating proliferation and migration of NSCLC cells via blocking ER stress. RCN1 could be required for proliferation and migration of NSCLC cells regulated by osteoblast-CM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号