首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2571篇
  免费   253篇
  国内免费   49篇
  2024年   8篇
  2023年   95篇
  2022年   90篇
  2021年   142篇
  2020年   107篇
  2019年   159篇
  2018年   123篇
  2017年   79篇
  2016年   92篇
  2015年   118篇
  2014年   147篇
  2013年   210篇
  2012年   111篇
  2011年   122篇
  2010年   103篇
  2009年   102篇
  2008年   112篇
  2007年   121篇
  2006年   86篇
  2005年   87篇
  2004年   91篇
  2003年   86篇
  2002年   76篇
  2001年   74篇
  2000年   37篇
  1999年   36篇
  1998年   36篇
  1997年   26篇
  1996年   34篇
  1995年   28篇
  1994年   22篇
  1993年   20篇
  1992年   20篇
  1991年   13篇
  1990年   3篇
  1989年   12篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有2873条查询结果,搜索用时 15 毫秒
81.
Prolactin (PRL) activates PRL receptor isoforms to exert regulation of specific neuronal circuitries, and to control numerous physiological and clinically-relevant functions including; maternal behavior, energy balance and food intake, stress and trauma responses, anxiety, neurogenesis, migraine and pain. PRL controls these critical functions by regulating receptor potential thresholds, neuronal excitability and/or neurotransmission efficiency. PRL also influences neuronal functions via activation of certain neurons, resulting in Ca2+ influx and/or electrical firing with subsequent release of neurotransmitters. Although PRL was identified almost a century ago, very little specific information is known about how PRL regulates neuronal functions. Nevertheless, important initial steps have recently been made including the identification of PRL-induced transient signaling pathways in neurons and the modulation of neuronal transient receptor potential (TRP) and Ca2+-dependent K+ channels by PRL. In this review, we summarize current knowledge and recent progress in understanding the regulation of neuronal excitability and channels by PRL.  相似文献   
82.
83.
84.
Mitochondria play a central role in the integration and execution of a wide variety of apoptotic signals. In the present study, we examined the deleterious effects of burn injury on heart tissue. We explored the effects of vagal nerve stimulation (VNS) on cardiac injury in a murine burn injury model, with a focus on the protective effect of VNS on mitochondrial dysfunction in heart tissue. Mice were subjected to a 30% total body surface area, full‐thickness steam burn followed by right cervical VNS for 10 min. and compared to burn alone. A separate group of mice were treated with the M3‐muscarinic acetylcholine receptor (M3‐AchR) antagonist 4‐DAMP or phosphatidylinositol 3 Kinase (PI3K) inhibitor LY294002 prior to burn and VNS. Heart tissue samples were collected at 6 and 24 hrs after injury to measure changes in apoptotic signalling pathways. Burn injury caused significant cardiac pathological changes, cardiomyocyte apoptosis, mitochondrial swelling and decrease in myocardial ATP content at 6 and 24 hrs after injury. These changes were significantly attenuated by VNS. VNS inhibited release of pro‐apoptotic protein cytochrome C and apoptosis‐inducing factor from mitochondria to cytosol by increasing the expression of Bcl‐2, and the phosphorylation level of Bad (pBad136) and Akt (pAkt308). These protective changes were blocked by 4‐DAMP or LY294002. We demonstrated that VNS protected against burn injury–induced cardiac injury by attenuating mitochondria dysfunction, likely through the M3‐AchR and the PI3K/Akt signalling pathways.  相似文献   
85.
《Autophagy》2013,9(4):618-630
U373MG cells constitutively express glutathione S-transferase mu 2 (GSTM2) and exhibit 3H-dopamine uptake, which is inhibited by 2 µM of nomifensine and 15 µM of estradiol. We generated a stable cell line (U373MGsiGST6) expressing an siRNA against GSTM2 that resulted in low GSTM2 expression (26% of wild-type U373MG cells). A significant increase in cell death was observed when U373MGsiGST6 cells were incubated with 50 µM purified aminochrome (18-fold increase) compared with wild-type cells. The incubation of U373MGsiGST6 cells with 75 µM aminochrome resulted in the formation of autophagic vacuoles containing undigested cellular components, as determined using transmission electron microscopy. A significant increase in autophagosomes was determined by measuring endogenous LC3-II, a significant decrease in cell death was observed in the presence of bafilomycin A1, and a significant increase in cell death was observed in the presence of trehalose. A significant increase in LAMP2 immunostaining was observed, a significant decrease in bright red fluorescence of lysosomes with acridine orange was observed, and bafilomycin A1 pretreatment reduced the loss of lysosome acidity. A significant increase in cell death was observed in the presence of lysosomal protease inhibitors. Aggregation of TUBA/α-tubulin (tubulin, α) and SQSTM1 protein accumulation were also observed. Moreover, a significant increase in the number of lipids droplets was observed compared with U373MG cells with normal expression of GSTM2. These results support the notion that GSTM2 is a protective enzyme against aminochrome toxicity in astrocytes and that aminochrome cell death in U373MGsiGST6 cells involves autophagic-lysosomal dysfunction.  相似文献   
86.
Autophagy is a cellular self-digestion process that mediates protein quality control and serves to protect against neurodegenerative disorders, infections, inflammatory diseases and cancer. Current evidence suggests that autophagy can selectively remove damaged organelles such as the mitochondria. Mitochondria-induced oxidative stress has been shown to play a major role in a wide range of pathologies in several organs, including the heart. Few studies have investigated whether enhanced autophagy can offer protection against mitochondrially-generated oxidative stress. We induced mitochondrial stress in cardiomyocytes using antimycin A (AMA), which increased mitochondrial superoxide generation, decreased mitochondrial membrane potential and depressed cellular respiration. In addition, AMA augmented nuclear DNA oxidation and cell death in cardiomyocytes. Interestingly, although oxidative stress has been proposed to induce autophagy, treatment with AMA did not result in stimulation of autophagy or mitophagy in cardiomyocytes. Our results showed that the MTOR inhibitor rapamycin induced autophagy, promoted mitochondrial clearance and protected cardiomyocytes from the cytotoxic effects of AMA, as assessed by apoptotic marker activation and viability assays in both mouse atrial HL-1 cardiomyocytes and human ventricular AC16 cells. Importantly, rapamycin improved mitochondrial function, as determined by cellular respiration, mitochondrial membrane potential and morphology analysis. Furthermore, autophagy induction by rapamycin suppressed the accumulation of ubiquitinylated proteins induced by AMA. Inhibition of rapamycin-induced autophagy by pharmacological or genetic interventions attenuated the cytoprotective effects of rapamycin against AMA. We propose that rapamycin offers cytoprotection against oxidative stress by a combined approach of removing dysfunctional mitochondria as well as by degrading damaged, ubiquitinated proteins. We conclude that autophagy induction by rapamycin could be utilized as a potential therapeutic strategy against oxidative stress-mediated damage in cardiomyocytes.  相似文献   
87.
《Autophagy》2013,9(9):1395-1406
Drug addiction is a chronic brain disease that is a serious social problem and causes enormous financial burden. Because mitochondrial abnormalities have been associated with opiate addiction, we examined the effect of morphine on mtDNA levels in rat and mouse models of addiction and in cultured cells. We found that mtDNA copy number was significantly reduced in the hippocampus and peripheral blood of morphine-addicted rats and mice compared with control animals. Concordantly, decreased mtDNA copy number and elevated mtDNA damage were observed in the peripheral blood from opiate-addicted patients, indicating detrimental effects of drug abuse and stress. In cultured rat pheochromocytoma (PC12) cells and mouse neurons, morphine treatment caused many mitochondrial defects, including a reduction in mtDNA copy number that was mediated by autophagy. Knockdown of the Atg7 gene was able to counteract the loss of mtDNA copy number induced by morphine. The mitochondria-targeted antioxidant melatonin restored mtDNA content and neuronal outgrowth and prevented the increase in autophagy upon morphine treatment. In mice, coadministration of melatonin with morphine ameliorated morphine-induced behavioral sensitization, analgesic tolerance and mtDNA content reduction. During drug withdrawal in opiate-addicted patients and improvement of protracted abstinence syndrome, we observed an increase of serum melatonin level. Taken together, our study indicates that opioid addiction is associated with mtDNA copy number reduction and neurostructural remodeling. These effects appear to be mediated by autophagy and can be salvaged by melatonin.  相似文献   
88.
Transient global ischemia (which closely resembles clinical situations such as cardiac arrest, near drowning or severe systemic hypotension during surgical procedures), often induces delayed neuronal death in the brain, especially in the hippocampal CA1 region. The mechanism of ischemia/reperfusion (I/R) injury is not fully understood. In this study, we have shown that the P2X7 receptor antagonist, BBG, reduced delayed neuronal death in the hippocampal CA1 region after I/R injury; P2X7 receptor expression levels increased before delayed neuronal death after I/R injury; inhibition of the P2X7 receptor reduced I/R-induced microglial microvesicle-like components, IL-1β expression, P38 phosphorylation, and glial activation in hippocampal CA1 region after I/R injury. These results indicate that antagonism of the P2X7 receptor and signaling pathways of microglial MV shedding, such as src-protein tyrosine kinase, P38 MAP kinase and A-SMase, might be a promising therapeutic strategy for clinical treatment of transient global cerebral I/R injury.  相似文献   
89.
90.
Ischemic stroke (IS), which is characterized by high morbidity, disability, and mortality, is recognized as a major cerebrovascular disease. MicroRNA-31 (miR-31) was reported to participate in the progression of brain disease. The present study was conducted in order to investigate the effect of miR-31 on oxidative stress-induced neuronal injury in IS mice with the involvement of protein kinase D1 (PKD1) and the JAK/STAT3 pathway. C57BL/6J mice were used to establish the middle cerebral artery occlusion (MCAO) model. Astrocytes were transfected with miR-31 mimic, miR-31 inhibitor, si-PKD1, or JAK-STAT3 pathway inhibitor. Following the establishment of an oxygen–glucose deprivation (OGD) model, the astrocytes were cocultured with neuronal OGD. Lower miR-31, higher PKD1 expressions, and activated JAK/STAT3 pathway were found in both the MCAO and OGD models. miR-31 could negatively target PKD1. In an MCAO model, overexpressing miR-31 and silencing PKD1 reduced neuronal injury, cerebral infarct volume, neuron loss, and oxidative stress injury, inhibited the activation of JAK/STAT3 pathway and the expressions of PKD1, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, malondialdehyde, 4-HNE, 8-HOdG, caspase-3, and Bax, but increased the superoxide dismutase content. In the OGD model, overexpression of miR-31 and silencing of PKD1 attenuated oxidative stress-induced neuronal injury, and diminished the lactate dehydrogenase leakage and reactive oxygen species level, accompanied by elevated neuronal viability. These results indicate that miR-31 alleviates inflammatory response as well as an oxidative stress-induced neuronal injury in IS mice by downregulating PKD1 and JAK/STAT3 pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号