首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15639篇
  免费   855篇
  国内免费   891篇
  17385篇
  2023年   152篇
  2022年   248篇
  2021年   286篇
  2020年   311篇
  2019年   390篇
  2018年   414篇
  2017年   341篇
  2016年   355篇
  2015年   398篇
  2014年   872篇
  2013年   1055篇
  2012年   772篇
  2011年   917篇
  2010年   678篇
  2009年   749篇
  2008年   857篇
  2007年   870篇
  2006年   713篇
  2005年   672篇
  2004年   590篇
  2003年   600篇
  2002年   499篇
  2001年   337篇
  2000年   331篇
  1999年   353篇
  1998年   358篇
  1997年   294篇
  1996年   259篇
  1995年   262篇
  1994年   248篇
  1993年   221篇
  1992年   193篇
  1991年   167篇
  1990年   134篇
  1989年   149篇
  1988年   96篇
  1987年   109篇
  1986年   81篇
  1985年   115篇
  1984年   161篇
  1983年   108篇
  1982年   107篇
  1981年   114篇
  1980年   80篇
  1979年   78篇
  1978年   65篇
  1977年   36篇
  1976年   46篇
  1975年   31篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 9 毫秒
871.
Exogenously applied abscisic acid (ABA) substantially suppressed the elongation of hypocotyl segments of etiolated squash ( Cucurbita maxima Duch. cv. Houkou-Aokawaamaguri) after a 3 h lag period, without changes in the osmolalities of the apoplastic and symplastic solutions in the segment.
Segments with the outer tissues removed elongated more rapidly than unpeeled segments (whole segments). ABA did not suppress the elongation of peeled segments. When the segments were incubated in [14C]-glucose, radioactivity was more effectively incorporated into the cell wall fractions of the outer than into those of the inner tissue. ABA significantly inhibited the incorporation of radioactivity into hermicellulose and cellulose of the outer tissue prior to the suppression of segment elongation, but it did not inhibit the incorporation into the pectic traction of the outer tissue or into any of the cell wall fractions of the inner tissue. These results indicate that ABA primarily affected the outer tissue, in which it specifically reduced the synthesis of hemicellulose and cellulose prior to the ABA-mediated suppression of growth.  相似文献   
872.
873.
山东野生延胡索资源调查和开发利用的研究   总被引:2,自引:0,他引:2  
本文介绍以延胡索中的止痛成分总生物碱及延胡索乙素为指标,对长岛、昆嵛山、牙山、日照等野生延胡索、引种浙元胡作了质量对比实验。从生物碱的含量测定及薄层分析结果看,浙元胡适宜在山东大面积引种,山东的野生延胡索亦可供药用。  相似文献   
874.
875.
Botulinum C2 toxin is known to ADP-ribosylate actin. The toxin effect was studied on [3H]noradrenaline secretion of PC12 cells. [3H]Noradrenaline release was stimulated five- to 15-fold by carbachol (100 microM) or K+ (50 mM) and 10-30-fold by the ionophore A23187 (5 microM). Pretreatment of PC12 cells with botulinum C2 toxin for 4-8 h at 20 degrees C, increased carbachol-, K+-, and A23187-induced, but not basal, [3H]noradrenaline release maximally 1.5-to three-fold, whereas approximately 75% of the cellular actin pool was ADP-ribosylated. Treatment of PC12 cells with botulinum C2 toxin for up to 1 h at 37 degrees C also increased stimulated [3H]noradrenaline secretion, whereas toxin treatment for greater than 1 h decreased the enhanced [3H]noradrenaline release stimulated by carbachol and K+ but not by A23187. Concomitantly with toxin-induced stimulation of secretion, 20-50% of the cellular actin was ADP-ribosylated, whereas greater than 60% of actin was modified when exocytosis was attenuated. The data indicate that ADP-ribosylation of actin by botulinum C2 toxin largely modulates stimulation of [3H]noradrenaline release. Moreover, the biphasic toxin effects suggest that distinct mechanisms are involved in the role of actin in secretion.  相似文献   
876.
Phospholipase C (PLC) isozymes are important signaling molecules, but few small molecule modulators are available to pharmacologically regulate their function. With the goal of developing a general approach for identification of novel PLC inhibitors, we developed a high-throughput assay based on the fluorogenic substrate reporter WH-15. The assay is highly sensitive and reproducible: screening a chemical library of 6280 compounds identified three novel PLC inhibitors that exhibited potent activities in two separate assay formats with purified PLC isozymes in vitro. Two of the three inhibitors also inhibited G protein-coupled receptor-stimulated PLC activity in intact cell systems. These results demonstrate the power of the high-throughput assay for screening large collections of small molecules to identify novel PLC modulators. Potent and selective modulators of PLCs will ultimately be useful for dissecting the roles of PLCs in cellular processes, as well as provide lead compounds for the development of drugs to treat diseases arising from aberrant phospholipase activity.  相似文献   
877.
Mitotic catastrophe is an oncosuppressive mechanism that senses mitotic failure leading to cell death or senescence. As such, it protects against aneuploidy and genetic instability, and its induction in cancer cells by exogenous agents is currently seen as a promising therapeutic end point. Apoptin, a small protein from Chicken Anemia Virus (CAV), is known for its ability to selectively induce cell death in human tumor cells. Here, we show that apoptin triggers p53-independent abnormal spindle formation in osteosarcoma cells. Approximately 50% of apoptin-positive cells displayed non-bipolar spindles, a 10-fold increase as compared to control cells. Besides, tumor cells expressing apoptin are greatly limited in their progress through anaphase and telophase, and a significant drop in mitotic cells past the meta-to-anaphase transition is observed. Time-lapse microscopy showed that mitotic osteosarcoma cells expressing apoptin displayed aberrant mitotic figures and/or had a prolonged cycling time during mitosis. Importantly, all dividing cells expressing apoptin eventually underwent cell death either during mitosis or during the following interphase. We infer that apoptin can efficiently trigger cell death in dividing human tumor cells through induction of mitotic catastrophe. However, the killing activity of apoptin is not only confined to dividing cells, as the CAV-derived protein is also able to trigger caspase-3 activation and apoptosis in non-mitotic cancer cells.  相似文献   
878.
The complement system is central to the rapid immune response witnessed in vertebrates and invertebrates, which plays a crucial role in physiology and pathophysiology. Complement activation fuels the proteolytic cascade, which produces several complement fragments that interacts with a distinct set of complement receptors. Among all the complement fragments, C5a is one of the most potent anaphylatoxins, which exerts solid pro-inflammatory responses in a myriad of tissues by binding to the complement receptors such as C5aR1 (CD88, C5aR) and C5aR2 (GPR77, C5L2), which are part of the rhodopsin subfamily of G-protein coupled receptors. In terms of signaling cascade, recruitment of C5aR1 or C5aR2 by C5a triggers the association of either G-proteins or β-arrestins, providing a protective response under normal physiological conditions and a destructive response under pathophysiological conditions. As a result, both deficiency and unregulated activation of the complement lead to clinical conditions that require therapeutic intervention. Indeed, complement therapeutics targeting either the complement fragments or the complement receptors are being actively pursued by both industry and academia. In this context, the model structural complex of C5a–C5aR1 interactions, followed by a biophysical evaluation of the model complex, has been elaborated on earlier. In addition, through the drug repurposing strategy, we have shown that small molecule drugs such as raloxifene and prednisone may act as neutraligands of C5a by effectively binding to C5a and altering its biologically active molecular conformation. Very recently, structural models illustrating the intermolecular interaction of C5a with C5aR2 have also been elaborated by our group. In the current study, we provide the biophysical validation of the C5a-C5aR2 model complex by recruiting major synthetic peptide fragments of C5aR2 against C5a. In addition, the ability of the selected neutraligands to hinder the interaction of C5a with the peptide fragments derived from both C5aR1 and C5aR2 has also been explored. Overall, the computational and experimental data provided in the current study supports the idea that small molecule drugs targeting C5a can potentially neutralize C5a's ability to interact effectively with its cognate complement receptors, which can be beneficial in modulating the destructive signaling response of C5a under pathological conditions.  相似文献   
879.
880.
W K Pollock  S O Sage  T J Rink 《FEBS letters》1987,210(2):132-136
We investigated the restoration of [Ca2+]i in fura-2-loaded human platelets following discharge of internal Ca2+ stores in the absence of external Ca2+. After stimulation by thrombin [Ca2+]i returned from a peak level of 0.6 μM to resting levels within 4 min. When ionomycin discharged the internal stores the recovery was slower with [Ca2+]i still elevated at around 0.5 μM after 5 min. Thrombin added shortly after ionomycin could accelerate the recovery of [Ca2+]i and restore resting levels within 5 min, an effect that was mimicked by phorbol-12-myristate-13-acetate (PMA). Since the continued presence of ionomycin precluded reuptake into the internal stores we conclude that thrombin and PMA stimulate Ca2+ efflux, perhaps via protein kinase C actions on a plasma membrane Ca2+ pump.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号