首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  35篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2019年   2篇
  2016年   1篇
  2015年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1992年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
21.
The freshwater leech, Hirudo medicinalis, is a versatile model organism that has been used to address scientific questions in the fields of neurophysiology, neuroethology, and developmental biology. The goal of this report is to consolidate experimental techniques from the leech system into a single article that will be of use to physiologists with expertise in other nervous system preparations, or to biology students with little or no electrophysiology experience. We demonstrate how to dissect the leech for recording intracellularly from identified neural circuits in the ganglion. Next we show how individual cells of known function can be removed from the ganglion to be cultured in a Petri dish, and how to record from those neurons in culture. Then we demonstrate how to prepare a patch of innervated skin to be used for mapping sensory or motor fields. These leech preparations are still widely used to address basic electrical properties of neural networks, behavior, synaptogenesis, and development. They are also an appropriate training module for neuroscience or physiology teaching laboratories.  相似文献   
22.
《Cell》2021,184(20):5122-5137.e17
  1. Download : Download high-res image (243KB)
  2. Download : Download full-size image
  相似文献   
23.
Migratory birds appear to have relatively smaller brain size compared to sedentary species. It has been hypothesized that initial differences in brain size underlying behavioural flexibility drove the evolution of migratory behaviour; birds with relatively large brains evolved sedentary habits and those with relatively small brains evolved migratory behaviour (migratory precursor hypothesis). Alternative hypotheses suggest that changes in brain size might follow different behavioural strategies and that sedentary species might have evolved larger brains because of differences in selection pressures on brain size in migratory and nonmigratory species. Here we present the first evidence arguing against the migratory precursor hypothesis. We compared relative brain volume of three subspecies of the white-crowned sparrow: sedentary Zonotrichia leucophrys nuttalli and migratory Z. l. gambelii and Z. l. oriantha. Within the five subspecies of the white-crowned sparrow, only Z. l. nuttalli is strictly sedentary. The sedentary behaviour of Z. l. nuttalli is probably a derived trait, because Z. l. nuttalli appears to be the most recent subspecies and because all species ancestral to Zonotrichia as well as all older subspecies of Z. leucophrys are migratory. Compared to migratory Z. l. gambelii and Z. l. oriantha, we found that sedentary Z. l. nuttalli had a significantly larger relative brain volume, suggesting that the larger brain of Z. l. nuttalli evolved after a switch to sedentary behaviour. Thus, in this group, brain size does not appear to be a precursor to the evolution of migratory or sedentary behaviour but rather an evolutionary consequence of a change in migratory strategy.  相似文献   
24.
25.
Vickers NJ 《Chemical senses》2006,31(2):155-166
Terrestrial odor plumes have a physical structure that results from turbulence in the fluid environment. The rapidity of insect flight maneuvers within a plume indicates that their responses are dictated by fleeting (<1 s) rather than longer (>1 s) exposures to odor imposed by physical variables that distribute odor molecules in time and space. Even though encounters with pheromone filaments are brief, male moths responding to female-produced pheromones are remarkably able to extract information relating to the biological properties of these olfactory signals. These properties include the types of molecule present and their relative abundances. Thus, peripheral and central olfactory neurons are capable of representing these biological properties of a pheromone plume within the context of a temporally irregular and unpredictable signal. The mechanisms underlying olfactory processing of these signals with respect to their biological and physical properties are discussed in the context of a behavioral framework.  相似文献   
26.
Studies of the factors affecting reproductive success in group-living monkeys have traditionally focused on competitive traits, like the acquisition of high dominance rank. Recent research, however, indicates that the ability to form cooperative social bonds has an equally strong effect on fitness. Two implications follow. First, strong social bonds make individuals'' fitness interdependent and the ‘free-rider’ problem disappears. Second, individuals must make adaptive choices that balance competition and cooperation—often with the same partners. The proximate mechanisms underlying these behaviours are only just beginning to be understood. Recent results from cognitive and systems neuroscience provide us some evidence that many social and non-social decisions are mediated ultimately by abstract, domain-general neural mechanisms. However, other populations of neurons in the orbitofrontal cortex, striatum, amygdala and parietal cortex specifically encode the type, importance and value of social information. Whether these specialized populations of neurons arise by selection or through developmental plasticity in response to the challenges of social life remains unknown. Many brain areas are homologous and show similar patterns of activity in human and non-human primates. In both groups, cortical activity is modulated by hormones like oxytocin and by the action of certain genes that may affect individual differences in behaviour. Taken together, results suggest that differences in cooperation between the two groups are a matter of degree rather than constituting a fundamental, qualitative distinction.  相似文献   
27.
《Current biology : CB》2019,29(17):2812-2825.e4
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   
28.
This study focuses on the sense of brightness in the foraging Japanese yellow swallowtail butterfly, Papilio xuthus. We presented two red discs of different intensity on a grey background to butterflies, and trained them to select one of the discs. They were successfully trained to select either a high intensity or a low intensity disc. The trained butterflies were tested on their ability to perceive brightness in two different protocols: (i) two orange discs of different intensity presented on the same intensity grey background and (ii) two orange discs of the same intensity separately presented on a grey background that was either higher or lower in intensity than the training background. The butterflies trained to high intensity red selected the orange disc of high intensity in protocol 1, and the disc on the background of low intensity grey in protocol 2. We obtained similar results in another set of experiments with purple discs instead of orange discs. The choices of the butterflies trained to low intensity red were opposite to those just described. Taken together, we conclude that Papilio has the ability to learn brightness and darkness of targets independent of colour, and that they have the so-called simultaneous brightness contrast.  相似文献   
29.
30.
Greater wax moths (Galleria mellonella L., Pyraloidea) use ultrasound sensitive ears to detect clicking conspecifics and echolocating bats. Pyralid ears have four sensory cells, A1?4. The audiogram of G. mellonella has best frequency at 60 kHz with a threshold around 47 dB sound pressure level. A1 and A2 have almost equal thresholds in contrast to noctuids and geometrids. A3 responds at + 12 to + 16 dB relative to the A1 threshold. The threshold data from the A‐cells give no indication of frequency discrimination in greater wax moths. Tethered greater wax moths respond to ultrasound with short‐latency cessation of flight at + 20 to + 25 dB relative to the A1 threshold. The behavioural threshold curve parallels the audiogram, thus further corroborating the lack of frequency discrimination. Hence, the distinction between bats and conspecifics is probably based on temporal cues. At a constant duty cycle (percentage of time where sound is on) the pulse repetition rate has no effect on the threshold for flight cessation, but stimulus duration affects both sensory and behavioural thresholds. The maximum integration time is essentially the same: 45 ms for the A1‐cell and 50–60 ms for the flight cessation response. However, the slopes of the time‐intensity trade‐off functions are very different: ? 2.1 dB per doubling of sound duration for the A1‐cell threshold, and ? 7.2 dB per doubling of sound duration for the behavioural threshold. The significance of the results for sexual acoustic communication as well as for bat defence is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号