首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   84篇
  国内免费   9篇
  2024年   3篇
  2023年   34篇
  2022年   39篇
  2021年   82篇
  2020年   33篇
  2019年   50篇
  2018年   52篇
  2017年   41篇
  2016年   50篇
  2015年   47篇
  2014年   68篇
  2013年   130篇
  2012年   64篇
  2011年   36篇
  2010年   43篇
  2009年   32篇
  2008年   55篇
  2007年   46篇
  2006年   25篇
  2005年   27篇
  2004年   42篇
  2003年   45篇
  2002年   28篇
  2001年   20篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有1126条查询结果,搜索用时 15 毫秒
81.
Heat shock protein 90 (Hsp90) is a molecular chaperone required for the stability and function of a number of conditionally activated and/or expressed signalling proteins, as well as multiple mutated, chimeric, and/or over-expressed signalling proteins, that promote cancer cell growth and/or survival. Hsp90 inhibitors are unique in that, although they are directed towards a specific molecular target, they simultaneously inhibit multiple cellular signalling pathways. By inhibiting nodal points in multiple overlapping survival pathways utilized by cancer cells, combination of an Hsp90 inhibitor with standard chemotherapeutic agents may dramatically increase the in vivo efficacy of the standard agent. Hsp90 inhibitors may circumvent the characteristic genetic plasticity that has allowed cancer cells to eventually evade the toxic effects of most molecularly targeted agents. The mechanism-based use of Hsp90 inhibitors, both alone and in combination with other drugs, should be effective toward multiple forms of cancer. Further, because Hsp90 inhibitors also induce Hsf-1-dependent expression of Hsp70, and because certain mutated Hsp90 client proteins are neurotoxic, these drugs display ameliorative properties in several neurodegenerative disease models, suggesting a novel role for Hsp90 inhibitors in treating multiple pathologies involving neurodegeneration.  相似文献   
82.
Defective Tyrosyl-DNA phosphodiesterase 1 (TDP1) can cause spinocerebellar ataxia with axonal neuropathy (SCAN1), a neurodegenerative syndrome associated with marked cerebellar atrophy and peripheral neuropathy. Although SCAN1 lymphoblastoid cells show pronounced defects in the repair of chromosomal single-strand breaks (SSBs), it is unknown if this DNA repair activity is important for neurons or for preventing neurodegeneration. Therefore, we generated Tdp1-/- mice to assess the role of Tdp1 in the nervous system. Using both in vitro and in vivo assays, we found that cerebellar neurons or primary astrocytes derived from Tdp1-/- mice display an inability to rapidly repair DNA SSBs associated with Top1-DNA complexes or oxidative damage. Moreover, loss of Tdp1 resulted in age-dependent and progressive cerebellar atrophy. Tdp1-/- mice treated with topotecan, a drug that increases levels of Top1-DNA complexes, also demonstrated significant loss of intestinal and hematopoietic progenitor cells. These data indicate that TDP1 is required for neural homeostasis, and reveal a widespread requisite for TDP1 function in response to acutely elevated levels of Top1-associated DNA strand breaks.  相似文献   
83.
1. Alpha-synuclein is known to play an important role in the pathogenesis of Parkinson’s disease (PD). The pathogenicity of α-synuclein is related to its ability to form intraneuronal inclusions. The inclusions, which are found in brains of patients with PD and diffuse Lewy body disease consist partially of C-terminally truncated α-synuclein. This α-synuclein species has an increased ability to form aggregates compared to full length α-synuclein. 2. We have used an adeno-associated virus (AAV) vector system to overexpress either C-terminally truncated or full length α-synuclein containing the A53T mutation, which have both been identified in brains of familial PD patients and transgenic mouse models. Dissociated mesencephalic neurons, cerebellar granule neurons, and organotypic midbrain slice cultures were infected with AAV containing the transgene under the control of the cytomegalovirus promoter. 3. We demonstrate that viral overexpression of α-synuclein(A53T) leads to the formation of distorted neurites, intraneuritic swellings, and granular perikaryal deposits in cultured neurons. Our results indicate that these cell culture models may represent an early phase of PD reflecting pathologic neuritic alterations before significant neuronal cell loss occurs.  相似文献   
84.
It has been proved that the principal component of senile plaques is aggregates of β‐amyloid peptide (Aβ) in cases of one of the most common forms of age‐related neurodegenerative disorders, Alzheimer's disease (AD). Although the synthetic methods for the synthesis of Aβ peptides have been developed since their first syntheses, Aβ[1‐42] is still problematic to prepare. The highly hydrophobic composition of Aβ[1‐42] results in aggregation between resin‐bound peptide chains or intrachain aggregation which leads to a decrease in the rates of deprotection and repetitive incomplete coupling reactions during 9‐flurenylmethoxycarbonyl (Fmoc) synthesis. In order to avoid aggregation and/or disrupt internal aggregation during stepwise Fmoc solid phase synthesis and to improve the quality of crude products, several attempts have been made. Since highly pure Aβ peptides in large quantities are used in biological experiments, we wanted to develop a method for a rational synthesis of human Aβ[1‐42] with high purity and adequate yield. This paper reports a convenient methodology with a novel solvent system for the synthesis of Aβ[1‐42], its N‐terminally truncated derivatives Aβ[4‐42] and Aβ[5‐42], and Aβ[1‐42] labeled with 7‐amino‐4‐methyl‐3‐coumarinylacetic acid (AMCA) at the N‐terminus using Fmoc strategy. The use of 10% anisole in Dimethylformamide/Dichloromethane (DMF/DCM) can substantially improve the purity and yield of crude Aβ[1‐42] and has been shown to be an optimal coupling condition for the synthesis of Aβ[1‐42]. Anisole is a cheap and simple aid in the synthesis of ‘difficult sequences’ where other solvents are less successful in the prevention of aggregation during the synthesis. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
85.
The potent parkinsonian neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) is known to cause dopaminergic neurodegeneration in nigrostriatal system. In the present study we investigated the nuclear morphology of cells in the substantia nigra pars compacta (SNpc) region of rats following unilateral intranigral infusion of the active metabolite, 1-methyl-4-phenyl pyridinium ion (MPP+), which resulted in a dose-dependent and prolonged dopamine depletion in the ipsilateral striatum. There appeared a substantial loss of tyrosine hydroxylase immunoreactive neurons in the SNpc that received the neurotoxin. Specific nuclear staining with Hoechst 33342 or acridine orange revealed bright pyknotic, shrunken, distorted nuclei and condensed chromatin with perinuclear nucleolus respectively following visualization with the former and latter dyes in the ipsilateral SNpc, as compared to the round, intact nuclei and centrally positioned nucleolus in the contralateral side. Ultrastructural details of the nucleus under transmission electron microscope confirmed distorted nuclear organization with shrunken or condensed nuclei and disrupted nuclear membrane. These features are typical of nucleus undergoing apoptosis, and suggest that MPP+ causes dopaminergic neuronal death through an apoptotic mode. Typical laddering pattern of genomic DNA isolated from the ipsilateral SN in agarose gel electrophoresis conclusively established apoptosis following intranigral administration of MPP+ in rats. Rebecca Banerjee and Sen Sreetama contributed equally to this paper.  相似文献   
86.
Mutations in the polytopic lysosomal membrane glycoprotein CLN3 result in a severe neurodegenerative disorder. Previous studies identified two cytosolic signal structures contributing to lysosomal targeting. We now examined the role of glycosylation and the C-terminal CAAX motif in lysosomal transport of CLN3 in non-neuronal and neuronal cells. Mutational analysis revealed that in COS7 cells, CLN3 is glycosylated at asparagine residues 71 and 85. Both partially and non-glycosylated CLN3 were transported correctly to lysosomes. Mevalonate incorporation and farnesyltransferase inhibitor studies indicate that CLN3 is prenylated most likely at cysteine 435. Substitution of cysteine 435 reduced the steady-state level of CLN3 in lysosomes most likely because of impaired sorting in early endosomal structures, particularly in neuronal cells. Additionally, the cell surface expression of CLN3 was increased in the presence of farnesyltransferase inhibitors. Alteration of the spacing between the transmembrane domain and the CAAX motif or the substitution of the entire C-terminal domain of CLN3 with cytoplasmic tails of mannose 6-phosphate receptors have demonstrated the importance of the C-terminal domain of proper length and composition for exit of the endoplasmic reticulum. The data suggest that co-operative signal structures in different cytoplasmic domains of CLN3 are required for efficient sorting and for transport to the lysosome.  相似文献   
87.
In Alzheimer's disease and tauopathies, tau protein aggregates into neurofibrillary tangles that progressively spread to synaptically connected brain regions. A prion‐like mechanism has been suggested: misfolded tau propagating through the brain seeds neurotoxic aggregation of soluble tau in recipient neurons. We use transgenic mice and viral tau expression to test the hypotheses that trans‐synaptic tau propagation, aggregation, and toxicity rely on the presence of endogenous soluble tau. Surprisingly, mice expressing human P301Ltau in the entorhinal cortex showed equivalent tau propagation and accumulation in recipient neurons even in the absence of endogenous tau. We then tested whether the lack of endogenous tau protects against misfolded tau aggregation and toxicity, a second prion model paradigm for tau, using P301Ltau‐overexpressing mice with severe tangle pathology and neurodegeneration. Crossed onto tau‐null background, these mice had similar tangle numbers but were protected against neurotoxicity. Therefore, misfolded tau can propagate across neural systems without requisite templated misfolding, but the absence of endogenous tau markedly blunts toxicity. These results show that tau does not strictly classify as a prion protein.  相似文献   
88.
The human health hazards related to persisting use of bisphenol-A (BPA) are well documented. BPA-induced neurotoxicity occurs with the generation of oxidative stress, neurodegeneration, and cognitive dysfunctions. However, the cellular and molecular mechanism(s) of the effects of BPA on autophagy and association with oxidative stress and apoptosis are still elusive. We observed that BPA exposure during the early postnatal period enhanced the expression and the levels of autophagy genes/proteins. BPA treatment in the presence of bafilomycin A1 increased the levels of LC3-II and SQSTM1 and also potentiated GFP-LC3 puncta index in GFP-LC3-transfected hippocampal neural stem cell-derived neurons. BPA-induced generation of reactive oxygen species and apoptosis were mitigated by a pharmacological activator of autophagy (rapamycin). Pharmacological (wortmannin and bafilomycin A1) and genetic (beclin siRNA) inhibition of autophagy aggravated BPA neurotoxicity. Activation of autophagy against BPA resulted in intracellular energy sensor AMP kinase (AMPK) activation, increased phosphorylation of raptor and acetyl-CoA carboxylase, and decreased phosphorylation of ULK1 (Ser-757), and silencing of AMPK exacerbated BPA neurotoxicity. Conversely, BPA exposure down-regulated the mammalian target of rapamycin (mTOR) pathway by phosphorylation of raptor as a transient cell''s compensatory mechanism to preserve cellular energy pool. Moreover, silencing of mTOR enhanced autophagy, which further alleviated BPA-induced reactive oxygen species generation and apoptosis. BPA-mediated neurotoxicity also resulted in mitochondrial loss, bioenergetic deficits, and increased PARKIN mitochondrial translocation, suggesting enhanced mitophagy. These results suggest implication of autophagy against BPA-mediated neurodegeneration through involvement of AMPK and mTOR pathways. Hence, autophagy, which arbitrates cell survival and demise during stress conditions, requires further assessment to be established as a biomarker of xenoestrogen exposure.  相似文献   
89.
Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo.  相似文献   
90.
Peripheral neuroinflammation caused by activated immune cells can provoke neuropathic pain. Herein, we investigate the actions of macrophages and T cells through glucocorticoid-induced tumor neurosis factor receptor ligand (GITRL) and its receptor (GITR) in neuropathic pain. After partial sciatic nerve ligation (PSL) in enhanced green fluorescent protein (eGFP) chimeric mice generated by the transplantation of eGFP+ bone marrow cells, eGFP+ macrophages, and T cells markedly migrated to the injured site after PSL. Administration of agents to deplete macrophages (liposome-clodronate and Clophosome-ATM) or T cells (anti-CD4 antibody and FTY720) could suppress PSL-induced thermal hyperalgesia and tactile allodynia. The expression levels of co-stimulatory molecules GITRL and GITR were increased on infiltrating macrophages and T cells, respectively. The perineural injection of a GITRL neutralizing antibody that could inhibit the function of the GITRL-GITR pathway attenuated PSL-induced neuropathic pain. Additionally, the induction of inflammatory cytokines and the accumulation of GITR+ T cells in the injured SCN were abrogated after macrophage depletion by Clophosome-ATM. In conclusion, GITRL expressed on macrophages drives cytokine release and T cell activation, resulting in neuropathic pain via GITR-dependent actions. The GITRL-GITR pathway might represent a novel target for the treatment of neuropathic pain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号