首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   84篇
  国内免费   9篇
  2024年   3篇
  2023年   34篇
  2022年   39篇
  2021年   82篇
  2020年   33篇
  2019年   50篇
  2018年   52篇
  2017年   41篇
  2016年   50篇
  2015年   47篇
  2014年   68篇
  2013年   130篇
  2012年   64篇
  2011年   36篇
  2010年   43篇
  2009年   32篇
  2008年   55篇
  2007年   46篇
  2006年   25篇
  2005年   27篇
  2004年   42篇
  2003年   45篇
  2002年   28篇
  2001年   20篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有1126条查询结果,搜索用时 15 毫秒
41.
This editorial highlights a study by Rodriguez, Sanchez‐Moran et al. (2019) in the current issue of the Journal of Neurochemistry, in which the authors describe a microcephalic boy carrying the novel heterozygous de novo missense mutation c.560A> G; p.Asp187Gly in Cdh1/Fzr1 encoding the APC/C E3‐ubiquitin ligase cofactor CDH1. A functional characterization of mutant APC/CCDH1 confirms an aberrant division of neural progenitor cells, a condition known to determine the mouse brain cortex size. These data suggest that APC/CCDH1 may contribute to the regulation of the human brain size.

  相似文献   

42.
43.
Senescence represents a stage in life associated with elevated incidence of morbidity and increased risk of mortality due to the accumulation of molecular alterations and tissue dysfunction, promoting a decrease in the organism''s protective systems. Thus, aging presents molecular and biological hallmarks, which include chronic inflammation, epigenetic alterations, neuronal dysfunction, and worsening of physical status. In this context, we explored the AAV9‐mediated expression of the two main isoforms of the aging‐protective factor Klotho (KL) as a strategy to prevent these general age‐related features using the senescence‐accelerated mouse prone 8 (SAMP8) model. Both secreted and transmembrane KL isoforms improved cognitive performance, physical state parameters, and different molecular variables associated with aging. Epigenetic landscape was recovered for the analyzed global markers DNA methylation (5‐mC), hydroxymethylation (5‐hmC), and restoration occurred in the acetylation levels of H3 and H4. Gene expression of pro‐ and anti‐inflammatory mediators in central nervous system such as TNF‐α and IL‐10, respectively, had improved levels, which were comparable to the senescence‐accelerated‐mouse resistant 1 (SAMR1) healthy control. Additionally, this improvement in neuroinflammation was supported by changes in the histological markers Iba1, GFAP, and SA β‐gal. Furthermore, bone tissue structural variables, especially altered during senescence, recovered in SAMP8 mice to SAMR1 control values after treatment with both KL isoforms. This work presents evidence of the beneficial pleiotropic role of Klotho as an anti‐aging therapy as well as new specific functions of the KL isoforms for the epigenetic regulation and aged bone structure alteration in an aging mouse model.  相似文献   
44.
Post‐translational modifications (PTMs) have emerged as key modulators of protein phase separation and have been linked to protein aggregation in neurodegenerative disorders. The major aggregating protein in amyotrophic lateral sclerosis and frontotemporal dementia, the RNA‐binding protein TAR DNA‐binding protein (TDP‐43), is hyperphosphorylated in disease on several C‐terminal serine residues, a process generally believed to promote TDP‐43 aggregation. Here, we however find that Casein kinase 1δ‐mediated TDP‐43 hyperphosphorylation or C‐terminal phosphomimetic mutations reduce TDP‐43 phase separation and aggregation, and instead render TDP‐43 condensates more liquid‐like and dynamic. Multi‐scale molecular dynamics simulations reveal reduced homotypic interactions of TDP‐43 low‐complexity domains through enhanced solvation of phosphomimetic residues. Cellular experiments show that phosphomimetic substitutions do not affect nuclear import or RNA regulatory functions of TDP‐43, but suppress accumulation of TDP‐43 in membrane‐less organelles and promote its solubility in neurons. We speculate that TDP‐43 hyperphosphorylation may be a protective cellular response to counteract TDP‐43 aggregation.  相似文献   
45.
46.
Pantothenate kinase–associated neurodegeneration (PKAN) is an incurable rare genetic disorder of children and young adults caused by mutations in the PANK2 gene, which encodes an enzyme critical for the biosynthesis of coenzyme A. Although PKAN affects only a small number of patients, it shares several hallmarks of more common neurodegenerative diseases of older adults such as Alzheimer''s disease and Parkinson''s disease. Advances in etiological understanding and treatment of PKAN could therefore have implications for our understanding of more common diseases and may shed new lights on the physiological importance of coenzyme A, a cofactor critical for the operation of various cellular metabolic processes. The large body of knowledge that accumulated over the years around PKAN pathology, including but not limited to studies of various PKAN models and therapies, has contributed not only to progress in our understanding of the disease but also, importantly, to the crystallization of key questions that guide future investigations of the disease. In this review, we will summarize this knowledge and demonstrate how it forms the backdrop to new avenues of research.  相似文献   
47.
48.
Neurotrophin binding to the extracellular surface of the Trk family of tyrosine kinase receptors leads to the activation of multiple signalling cascades, culminating in neuroregenerative effects, including neuronal survival and neurite outgrowth. Since neurotrophins themselves are not ideal drug candidates due to their poor pharmacokinetic behaviour and bioavailability, small molecule neurotrophin mimetics may be beneficial in treating a number of neurodegenerative disorders. The present study demonstrates that L-783,281, a non-peptidyl fungal metabolite, is capable of stimulating TrkA, B and C phosphorylation to various extents in CHO cells stably expressing human Trk receptors. L-783,281 also stimulated Trk phosphorylation in a number of rat and human primary neuronal cultures, whereas the highly similar compound, L-767,827, was without effect. Mechanistic studies utilizing transiently transfected PDGF/TrkA and TrkA/PDGF chimeras, demonstrated that L-783,281 is likely to interact with the intracellular domain of the TrkA receptor. Further investigations suggested that L-783,281 was nevertheless able to instigate receptor dimerization by binding in a non-covalent manner. Although the cytotoxicity of the compound was shown to preclude its effects in neuronal survival and neurite outgrowth assays, it is a prototype for a small molecule neurotrophin mimetic that activates Trk by interacting at a site different from the neurotrophin-binding site.  相似文献   
49.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, emotional and cognitive dysfunction. There is no treatment or cure for this disease, and after the onset of symptoms, usually in the fourth decade of life, there is an inexorable decline to death. In many patients there is a complex deterioration of function before the onset of neuronal loss and, at least in mouse models, abnormalities in neurotransmission represent early events in the development of the disease. Here we describe the specific and progressive loss of complexin II from the brains of mice carrying the HD mutation (R6/2 line), and the later appearance of this protein in a subpopulation of neuronal intranuclear inclusions. Although the precise role of complexin II is still unclear, it is known to bind to the SNARE complex, and is therefore likely to be involved in the control of exocytosis. Our results suggest that changes in neurotransmitter release might contribute to the neuronal dysfunction seen in these mice.  相似文献   
50.
Copper is an essential transition metal ion for the function of key metabolic enzymes, but its uncontrolled redox reactivity is source of reactive oxygen species. Therefore a network of transporters strictly controls the trafficking of copper in living systems. Deficit, excess, or aberrant coordination of copper are conditions that may be detrimental, especially for neuronal cells, which are particularly sensitive to oxidative stress. Indeed, the genetic disturbances of copper homeostasis, Menkes' and Wilson's diseases, are associated with neurodegeneration. Furthermore, copper interacts with the proteins that are the hallmarks of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, prion diseases, and familial amyotrophic lateral sclerosis. In all cases, copper-mediated oxidative stress is linked to mitochondrial dysfunction, which is a common feature of neurodegeneration. In particular we recently demonstrated that in copper deficiency, mitochondrial function is impaired due to decreased activity of cytochrome c oxidase, leading to production of reactive oxygen species, which in turn triggers mitochondria-mediated apoptotic neurodegeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号