首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1033篇
  免费   85篇
  国内免费   9篇
  1127篇
  2024年   3篇
  2023年   35篇
  2022年   39篇
  2021年   82篇
  2020年   33篇
  2019年   50篇
  2018年   52篇
  2017年   41篇
  2016年   50篇
  2015年   47篇
  2014年   68篇
  2013年   130篇
  2012年   64篇
  2011年   36篇
  2010年   43篇
  2009年   32篇
  2008年   55篇
  2007年   46篇
  2006年   25篇
  2005年   27篇
  2004年   42篇
  2003年   45篇
  2002年   28篇
  2001年   20篇
  2000年   9篇
  1999年   4篇
  1998年   7篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有1127条查询结果,搜索用时 0 毫秒
31.
Dystonia musculorum (dt) is a recessive hereditary neuropathy of the mouse. Affected animals display loss of limb coordination and twisting of the trunk. Sensory nerve fibers of these mice are severely reduced in number, and the remaining fibers present numerous axonal swellings. The gene defective in dt, dystonin (Dst), encodes a cytoskeletal linker protein that forms the bridge between F-actin and intermediate filaments. Dst is expressed during embryogenesis, whereas overt phenotype in dt mice only appears during the second week after birth. Here we show that axonal swellings are present in sensory nerve fibers of dt embryos as early as E15.5, before myelination and radial axonal growth have begun. Thus disease progression is gradual in dt mice, having begun during embryogenesis. In dt embryos, microtubule network disorganization and cytoplasmic organelle accumulation within axonal swellings were consistently observed. In addition, a few of the axonal swellings presented intermediate filament accumulation. These results demonstrate that dystonin is required for cytoskeleton organization during axonogenesis. They also suggest that axonal transport defects, through microtubule network perturbation, may be the primary mechanism of neurodegeneration in dt mice. Dev. Genet. 22:160–168, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
32.
The genotoxicity of reactive oxygen species (ROS) is well established. The underlying mechanism involves oxidation of DNA by ROS. However, we have recently shown that hydrogen peroxide (H2O2), the major mediator of oxidative stress, can also cause genomic damage indirectly. Thus, H2O2 at pathologically relevant concentrations rapidly induces higher order chromatin degradation (HOCD), i.e. enzymatic excision of chromatin loops and their oligomers at matrix-attachment regions. The activation of endonuclease that catalyzes HOCD is a signalling event triggered specifically by H2O2. The activation is not mediated by an influx of calcium ions, but resting concentrations of intracellular calcium ions are required for the maintenance of the endonuclease in an active form. Although H2O2-induced HOCD can efficiently dismantle the genome leading to cell death, under sublethal oxidative stress conditions H2O2-induced HOCD may be the major source of somatic mutations.  相似文献   
33.
A genetic mutation in the C9orf72 gene causes the most common forms of neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The C9orf72 protein, predicted to be a DENN-family protein, is reduced in ALS and FTD, but its functions remain poorly understood. Using a 3110043O21Rik/C9orf72 knockout mouse model, as well as cellular analysis, we have found that loss of C9orf72 causes alterations in the signaling states of central autophagy regulators. In particular, C9orf72 depletion leads to reduced activity of MTOR, a negative regulator of macroautophagy/autophagy, and concomitantly increased TFEB levels and nuclear translocation. Consistent with these alterations, cells exhibit enlarged lysosomal compartments and enhanced autophagic flux. Loss of the C9orf72 interaction partner SMCR8 results in similar phenotypes. Our findings suggest that C9orf72 functions as a potent negative regulator of autophagy, with a central role in coupling the cellular metabolic state with autophagy regulation. We thus propose C9orf72 as a fundamental component of autophagy signaling with implications in basic cell physiology and pathophysiology, including neurodegeneration.  相似文献   
34.
Age is the greatest risk factor for Parkinson''s disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex‐ and age‐related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age‐related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age‐ and sex‐related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females'' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age‐related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age‐ and PD‐related neurodegeneration.  相似文献   
35.
36.
37.
《Autophagy》2013,9(12):2099-2108
Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways.  相似文献   
38.
39.
40.
Acute administration of repeated doses of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) dramatically reduces striatal dopamine (DA) content, tyrosine hydroxylase (TH), and DA transporter-immunoreactivity in mice. In this study, we show for the first time the spatiotemporal pattern of dopaminergic damage and related molecular events produced by MDMA administration in mice. Our results include the novel finding that MDMA produces a significant decrease in the number of TH-immunoreactive neurons in the substantia nigra (SN). This decrease appears 1 day after injection, remains stable for at least 30 days, and is accompanied by a dose-dependent long-lasting decrease in TH- and DA transporter-immunoreactivity in the striatum, which peaked 1 day after treatment and persisted for at least 30 days, however, some recovery was evident from day 3 onwards, evidencing sprouting of TH fibers. No change is observed in the NAc indicating that MDMA causes selective destruction of DA-containing neurons in the nigrostriatal pathway, sparing the mesolimbic pathway. The expression of Mac-1 increased 1 day after MDMA treatment and glial fibrillary acidic protein increased 3 days post-treatment in the striatum and SN but not in the NAc, in strict anatomical correlation with dopaminergic damage. These data provide the first evidence that MDMA causes persistent loss of dopaminergic cell bodies in the SN.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号