首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   344篇
  免费   28篇
  国内免费   3篇
  375篇
  2024年   1篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   7篇
  2017年   9篇
  2016年   9篇
  2015年   14篇
  2014年   10篇
  2013年   26篇
  2012年   8篇
  2011年   14篇
  2010年   10篇
  2009年   17篇
  2008年   16篇
  2007年   20篇
  2006年   18篇
  2005年   12篇
  2004年   21篇
  2003年   13篇
  2002年   17篇
  2001年   20篇
  2000年   13篇
  1999年   9篇
  1998年   10篇
  1997年   14篇
  1996年   5篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   12篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1981年   2篇
排序方式: 共有375条查询结果,搜索用时 15 毫秒
101.
Many of the physiological benefits attributed to flavonoids are thought to stem from their potent antioxidant and free radical scavenging properties. Recently, it was shown that flavonoids protect nerve cells from oxidative stress by multiple mechanisms, only one of which is directly related to their antioxidant activity, suggesting that specific flavonoids may have other properties that could make them useful in the treatment of conditions that lead to nerve cell death. In particular, it was asked if any flavonoid could mimic neurotrophic proteins. To examine this possibility, we looked at the ability of flavonoids to induce nerve cell differentiation using PC12 cells. PC12 cells were treated with a variety of flavonoids to determine if there was a correlation between their neuroprotective activity and their neurite outgrowth-promoting activity. In addition, the signaling pathways required for flavonoid-induced differentiation were examined. We found that only a small subset of the flavonoids that were neuroprotective could induce neurite outgrowth by an extracellular signal-regulated kinase-dependent process. There was a strong correlation between the concentrations of the flavonoids that were neuroprotective and the concentrations that induced differentiation. These results suggest that the consumption of specific flavonoids could have further beneficial effects on nerve cells following injury, in pathological conditions or in normal aging.  相似文献   
102.
To determine whether neurite outgrowth depends upon the mevalonate pathway, we blocked mevalonate synthesis in nerve growth factor-treated PC12 cells or primary cortical neurones with atorvastatin, a 3-hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, and substituted different intermediates of the mevalonate pathway. We show that HMG-CoA reductase inhibition causes a profound reduction of neurite length, neurite loss and ultimatively cell death in undifferentiated and pre-differentiated PC12 cells and also in rat primary cortical neurones. Geranylgeranylpyrophosphate, but not farnesylpyrophosphate, squalene or cholesterol, completely compensated for the lack of mevalonate. Our data indicate that, under HMG-CoA reductase inhibition, geranylgeranylpyrophosphate rather than farnesylpyrophosphate or cholesterol is critical for neurite outgrowth and/or maintenance. Loss of neurites is an early manifestation of various neurodegenerative disorders, and dysfunction of isoprenylation might play a role in their pathogenesis.  相似文献   
103.
CAP23 is a major cortical cytoskeleton-associated and calmodulin binding protein that is widely and abundantly expressed during development, maintained in selected brain structures in the adult, and reinduced during nerve regeneration. Overexpression of CAP23 in adult neurons of transgenic mice promotes nerve sprouting, but the role of this protein in process outgrowth was not clear. Here, we show that CAP23 is functionally related to GAP43, and plays a critical role to regulate nerve sprouting and the actin cytoskeleton. Knockout mice lacking CAP23 exhibited a pronounced and complex phenotype, including a defect to produce stimulus-induced nerve sprouting at the adult neuromuscular junction. This sprouting deficit was rescued by transgenic overexpression of either CAP23 or GAP43 in adult motoneurons. Knockin mice expressing GAP43 instead of CAP23 were essentially normal, indicating that, although these proteins do not share homologous sequences, GAP43 can functionally substitute for CAP23 in vivo. Cultured sensory neurons lacking CAP23 exhibited striking alterations in neurite outgrowth that were phenocopied by low doses of cytochalasin D. A detailed analysis of such cultures revealed common and unique functions of CAP23 and GAP43 on the actin cytoskeleton and neurite outgrowth. The results provide compelling experimental evidence for the notion that CAP23 and GAP43 are functionally related intrinsic determinants of anatomical plasticity, and suggest that these proteins function by locally promoting subplasmalemmal actin cytoskeleton accumulation.  相似文献   
104.
A chimeric molecule consisting of the extracellular domain of the adhesion molecule, N-cadherin, fused to the Fc region of human IgG (NCAD-Fc) supports calcium-dependent cell adhesion and promotes neurite outgrowth following affinity-capture to a tissue culture substrate. When presented to cerebellar neurons as a soluble molecule, the NCAD-Fc stimulated neurite outgrowth in a manner equivalent to that seen for N-cadherin expressed as a cell surface glycoprotein. Neurons expressing a dominant-negative version of the fibroblast growth factor (FGF) receptor did not respond to soluble NCAD-Fc. In cells transfected with full-length N-cadherin and the FGF receptor, antibody-clustering of N-cadherin resulted in a co-clustering of the FGF receptor to discrete patches in the cell membrane. The data demonstrate that the ability of N-cadherin to stimulate neurite outgrowth can be dissociated from its ability to function as a substrate associated adhesion molecule. The N-cadherin and the FGF receptor co-clustering in cells provides a basis for the neurite outgrowth response stimulated by N-cadherin being dependent on FGF receptor function.  相似文献   
105.
Lin-11, Isl-1 and Mec-3 (LIM) kinases are serine/threonine kinases that phosphorylate cofilin, an actin depolymerizing protein. LIM kinases have a highly modular structure composed of two N-terminal LIM domains (LIM 1/2), a PSD-95, Dlg and ZO-1 (PDZ) domain and a C-terminal protein kinase domain. Here, we overexpressed individual domains of mouse LIM kinase 1 (LIMK1) in PC12 cells and investigated their effects on neurite outgrowth. Although none of the LIMK1 domains had an effect on spontaneous neurite outgrowth, the N-terminal LIM 1/2 domains strongly inhibited differentiation of PC12 cells after stimulation with both nerve growth factor (NGF) and the Rho-kinase inhibitor Y-27632. In contrast, the overexpressed PDZ domain reduced neurite outgrowth only when differentiation had been induced by Y-27632, but not by NGF. Our data suggest that the different non-catalytic N-terminal domains of LIMK1 contribute to the regulation of neurite extension by using distinct signal transduction pathways.  相似文献   
106.
In this study we show that embryonic neurite growth-promoting protein amphoterin binds to carboxylated N -glycans previously identified on mammalian endothelial cells. Since amphoterin is a ligand for the receptor for advanced glycation end products (RAGE), and the ligand-binding V-domain of the receptor contains two potential N -glycosylation sites, we hypothesized that N -glycans on RAGE may mediate its interactions with amphoterin. In support of this, anti-carboxylate antibody mAbGB3.1 immunoprecipitates bovine RAGE, and PNGase F treatment reduces its molecular mass by 4.5 kDa, suggesting that the native receptor is a glycoprotein. The binding potential of amphoterin to RAGE decreases significantly in presence of soluble carboxylated glycans or when the receptor is deglycosylated. Oligosaccharide analysis shows that RAGE contains complex type anionic N -glycans with non-sialic acid carboxylate groups, but not the HNK-1 (3-sulfoglucuronyl beta1-3 galactoside) epitope. Consistent with the functional localization of RAGE and amphoterin at the leading edges of developing neurons, mAbGB3.1 stains axons and growth cones of mouse embryonic cortical neurons, and inhibits neurite outgrowth on amphoterin matrix. The carboxylated glycans themselves promote neurite outgrowth in embryonic neurons and RAGE-transfected neuroblastoma cells. This outgrowth requires full-length, signalling-competent RAGE, as cells expressing cytoplasmic domain-deleted RAGE are unresponsive. These results indicate that carboxylated N -glycans on RAGE play an important functional role in amphoterin-RAGE-mediated signalling.  相似文献   
107.
We compared the receptor binding, antigenicity, biological activation, and cell-mediated proteolytic degradation properties of mouse nerve growth factor (mNGF) and human NGF (hNGF). The affinity of hNGF toward human NGF-receptor is greater than that of mNGF, but the affinity of mNGF toward rat NGF-receptor is greater than that of hNGF. Thus, the specificity of the interaction between NGF and its receptor resides both on the NGF and on its receptor. Using a group of anti-NGF monoclonal antibodies that competitively inhibit the binding of NGF to receptor, sites differing between mNGF and hNGF were detected. Together, these results indicate that the sites on hNGF and mNGF, responsible for binding to NGF-receptor, are similar but not identical. In comparing the relative abilities of mNGF and hNGF to stimulate a biological response in PC12 cells, we observed that mNGF was better at stimulating neurite outgrowth than was hNGF, consistent with the differences observed for receptor binding affinity. However, the ED50 for biological activation is approximately 100-fold lower than theK d for receptor occupancy, and, thus, the dose-response curve is not consistent with a simple activation proportional to receptor occupancy. The data are consistent with a model requiring a low-level threshold occupancy of NGF-receptor (K d=10–9 M) in order to stimulate full biological activity. Finally, we observed the degradation of NGF by PC12 cells. We found that the NGF molecule is significantly degraded via a receptor-mediated uptake mechanism. Together, the data provide insight into regions of the NGF molecule involved in contacts with the receptor leading to formation of the NGF: NGF-receptor complex. Additionally, they establish the link between occupancy of receptor and biological activation and the requirement for receptor-mediated uptake in order to degrade NGF proteolytically in cultured PC12 cells.  相似文献   
108.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.  相似文献   
109.
Sun Y  Kim NH  Yang H  Kim SH  Huh SO 《Molecules and cells》2011,31(5):483-489
Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects, including rapid neurite retraction and cell migration. Alterations in cell morphology, including neurite retraction, in neurodegenerative disorders such as Alzheimer's disease involve hyperphosphorylation of the cytoskeletal protein tau. Since LPA has been shown to induce neurite retraction in various cultured neural cells and the detailed underlying molecular mechanisms have not yet been elucidated, we investigated whether LPA induced neurite retraction through taumediated signaling pathways in differentiated neuroblastoma cells. When Neuro2a cells differentiated with retinoic acid (RA) were exposed to LPA, cells exhibited neurite retraction in a time-dependent manner. The retraction of neurites was accompanied by the phosphorylation of tau. The LPA-induced neurite retraction and tau phosphorylation in differentiated Neuro2a cells were significantly abolished by the glycogen synthase kinase-3β (GSK-3β) inhibitor lithium chloride. Interestingly, the LPA-stimulated tau phosphorylation and neurite retraction were markedly prevented by the administration of H89, an inhibitor of both cyclic-AMP dependent protein kinase (PKA) and cyclic-AMP response element-binding protein (CREB). Transfection of the dominant-negative CREBs, K-CREB and A-CREB, failed to prevent LPA-induced tau phosphorylation and neurite retraction in differentiated Neuro2a cells. Taken together, these results suggest that GSK-3β and PKA, rather than CREB, play important roles in tau phosphorylation and neurite retraction in LPA-stimulated differentiated Neuro2a cells.  相似文献   
110.
Phospholipase C‐η2 is a recently identified phospholipase C (PLC) implicated in the regulation of neuronal differentiation/maturation. PLCη2 activity is triggered by intracellular calcium mobilization and likely serves to amplify Ca2+ signals by stimulating further Ca2+ release from Ins(1,4,5)P3‐sensitive stores. The role of PLCη2 in neuritogenesis was assessed during retinoic acid (RA)‐induced Neuro2A cell differentiation. PLCη2 expression increased two‐fold during a 4‐day differentiation period. Stable expression of PLCη2‐targetted shRNA led to a decrease in the number of differentiated cells and total length of neurites following RA‐treatment. Furthermore, RA response element activation was perturbed by PLCη2 knockdown. Using a bacterial two‐hybrid screen, we identified LIM domain kinase 1 (LIMK1) as a putative interaction partner of PLCη2. Immunostaining of PLCη2 revealed significant co‐localization with LIMK1 in the nucleus and growing neurites in Neuro2A cells. RA‐induced phosphorylation of LIMK1 and cAMP‐responsive element‐binding protein was reduced in PLCη2 knock‐down cells. The phosphoinositide‐binding properties of the PLCη2 PH domain, assessed using a FRET‐based assay, revealed this domain to possess a high affinity toward PtdIns(3,4,5)P3. Immunostaining of PLCη2 together with PtdIns(3,4,5)P3 in the Neuro2A cells revealed a high degree of co‐localization, indicating that PtdIns(3,4,5)P3 levels in cellular compartments are likely to be important for the spatial control of PLCη2 signaling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号