全文获取类型
收费全文 | 7156篇 |
免费 | 827篇 |
国内免费 | 306篇 |
专业分类
8289篇 |
出版年
2024年 | 22篇 |
2023年 | 218篇 |
2022年 | 230篇 |
2021年 | 403篇 |
2020年 | 312篇 |
2019年 | 346篇 |
2018年 | 305篇 |
2017年 | 264篇 |
2016年 | 281篇 |
2015年 | 363篇 |
2014年 | 464篇 |
2013年 | 447篇 |
2012年 | 320篇 |
2011年 | 333篇 |
2010年 | 285篇 |
2009年 | 358篇 |
2008年 | 398篇 |
2007年 | 396篇 |
2006年 | 340篇 |
2005年 | 284篇 |
2004年 | 260篇 |
2003年 | 253篇 |
2002年 | 195篇 |
2001年 | 156篇 |
2000年 | 128篇 |
1999年 | 137篇 |
1998年 | 139篇 |
1997年 | 97篇 |
1996年 | 108篇 |
1995年 | 71篇 |
1994年 | 60篇 |
1993年 | 94篇 |
1992年 | 51篇 |
1991年 | 28篇 |
1990年 | 27篇 |
1989年 | 21篇 |
1988年 | 10篇 |
1987年 | 15篇 |
1986年 | 16篇 |
1985年 | 8篇 |
1984年 | 5篇 |
1983年 | 8篇 |
1982年 | 14篇 |
1981年 | 5篇 |
1980年 | 3篇 |
1979年 | 4篇 |
1978年 | 4篇 |
1977年 | 2篇 |
1976年 | 1篇 |
排序方式: 共有8289条查询结果,搜索用时 15 毫秒
41.
Akira Oda Kanato Yamagata Saya Nakagomi Hiroshi Uejima Pattama Wiriyasermkul Ryuichi Ohgaki Shushi Nagamori Yoshikatsu Kanai Hidekazu Tanaka 《Journal of neurochemistry》2014,128(2):246-255
Cholinergic neurons in the CNS are involved in synaptic plasticity and cognition. Both muscarinic and nicotinic acetylcholine receptors (nAChRs) influence plasticity and cognitive function. The mechanism underlying nAChR‐induced plasticity, however, has remained elusive. Here, we demonstrate morphological changes in dendritic spines following activation of α4β2* nAChRs, which are expressed on glutamatergic pre‐synaptic termini of cultured hippocampal neurons. Exposure of the neurons to nicotine resulted in a lateral enlargement of spine heads. This was abolished by dihydro‐β‐erythroidine, an antagonist of α4β2* nAChRs, but not by α‐bungarotoxin, an antagonist of α7 nAChRs. Tetanus toxin or a mixture of 2‐amino‐5‐phosphonovaleric acid and 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione, antagonists of NMDA‐ and AMPA‐type glutamate receptors, blocked the nicotine‐induced spine remodeling. In addition, nicotine exerted full spine‐enlarging response in the post‐synaptic neuron whose β2 nAChR expression was knocked down. Finally, pre‐treatment with nicotine enhanced the Ca2+‐response of the neurons to glutamate. These data suggest that nicotine influences the activity of glutamatergic neurotransmission through the activation of pre‐synaptic α4β2 nAChRs, resulting in the modulation of spinal architecture and responsiveness. The present findings may represent one of the cellular mechanisms underlying cholinergic tuning of brain function.
43.
Variability of genetic sex determination in poeciliid fishes 总被引:9,自引:4,他引:9
Poeciliids are one of the best-studied groups of fishes with respect to sex determination. They present an amazing variety of mechanisms, which span from simple XX-XY or ZZ-ZW systems to polyfactorial sex determination. The gonosomes of poeciliids generally are homomorphic, but very early stages of sex chromosome differentiation have been occasionally detected in some species. In the platyfish Xiphophorus maculatus, gene loci involved in melanoma formation, in different pigmentation patterns and in sexual maturity are closely linked to the sex-determining locus in the subtelomeric region of the X- and Y- chromosomes. The majority of traits encoded by these loci are highly polymorphic. This phenomenon might be explained by the high level of genomic plasticity apparently affecting the sex-determining region, where frequent rearrangements such as duplications, deletions, amplifications, and transpositions frequently occur. We propose that the high plasticity of the sex-determining region might explain the variability of sex determination in Xiphophorus and otherbreak poeciliids. 相似文献
44.
45.
Kirk A. Moloney Claus Holzapfel Katja Tielbrger Florian Jeltsch Frank M. Schurr 《Perspectives in Plant Ecology, Evolution and Systematics》2009,11(4):311-320
In common garden experiments, a number of genotypes are raised in a common environment in order to quantify the genetic component of phenotypic variation. Common gardens are thus ideally suited for disentangling how genetic and environmental factors contribute to the success of invasive species in their new non-native range. Although common garden experiments are increasingly employed in the study of invasive species, there has been little discussion about how these experiments should be designed for greatest utility. We argue that this has delayed progress in developing a general theory of invasion biology. We suggest a minimum optimal design (MOD) for common garden studies that target the ecological and evolutionary processes leading to phenotypic differentiation between native and invasive ranges. This involves four elements: (A) multiple, strategically sited garden locations, involving at the very least four gardens (2 in the native range and 2 in the invaded range); (B) careful consideration of the genetic design of the experiment; (C) standardization of experimental protocols across all gardens; and (D) care to ensure the biosafety of the experiment. Our understanding of the evolutionary ecology of biological invasions will be greatly enhanced by common garden studies, if and only if they are designed in a more systematic fashion, incorporating at the very least the MOD suggested here. 相似文献
46.
In abandoned or extensively managed grasslands, the mechanisms involved in pioneer tree species success are not fully explained. Resource competition among plants and microclimate modifications have been emphasised as possible mechanisms to explain variation of survivorship and growth. In this study, we evaluated a number of mechanisms that may lead to successful survival and growth of seedlings of a pioneer tree species (Pinus sylvestris) in a grass-dominated grassland. Three-year-old Scots pines were planted in an extensively managed grassland of the French Massif Central and for 2 years were either maintained in bare soil or subjected to aerial and below-ground interactions induced by grass vegetation. Soil temperatures were slightly higher in bare soil than under the grass vegetation, but not to an extent explaining pine growth differences. The tall grass canopy reduced light transmission by 77% at ground level and by 20% in the upper part of Scots pine seedlings. Grass vegetation presence also significantly decreased soil volumetric water content (Hv) and soil nitrate in spring and in summer. In these conditions, the average tree height was reduced by 5% compared to trees grown in bare soil, and plant biomass was reduced by 85%. Scots pine intrinsic water-use efficiency (A/g), measured by leaf gas-exchange, increased when Hv decreased owing to a rapid decline of stomatal conductance (g). This result was also confirmed by δ
13C analyses of needles. A summer 15N labelling of seedlings and grass vegetation confirmed the higher NO3 capture capacity of grass vegetation in comparison with Scots pine seedlings. Our results provide evidence that the seedlings' success was linked to tolerance of below-ground resource depletion (particularly water) induced by grass vegetation based on morphological and physiological plasticity as well as to resource conservation. 相似文献
47.
Mag. rer. nat. Alois Lametschwandtner Peter Simonsberger Hans Adam 《Cell and tissue research》1977,180(4):433-442
The angioarchitecture of the neural stalk and the encephaloposthypophysial portal system of the hypophysis of the toad, Bufo bufo (L.), was studied using three different methods. The neural stalk is mainly supplied by branches of the arteria infundibularis superficialis which form a widemeshed vascular network. Dorsally this network continues into the plexus of the pars nervosa. The vascularization of the pars nervosa is made up of the encephalo-posthypophysial portal system. This portal system consists of a hypothalamic branch (=portion), a mesencephalic and a mesencephalicbulbar branch (=portion). The hypothalamic branch was found to drain the pars ventralis of the tuber cinereum as well as more dorsal regions of the diencephalon. The mesencephalic-bulbar trunk enters the hypothalamic branch. The resulting common stem of the encephalo-posthypophysial portal vein the curves around the retroinfundibular communicating artery, crosses its ventral side and runs caudally. The secondary capillary plexus of the pars nervosa is characterized by well defined capillary plexus of the pars nervosa is characterized by well defined capillary networks which are located at the periphery of the parenchyma of the pars nervosa, thus forming a rostral, dorsal and ventro-caudal net. The central region of the parenchyma of the pars nervosa is supplied only by main branches of the encephalo-postpophysial portal vein. The venous drainage of the pars nervosa is via the vena hypophysea transversa. 相似文献
48.
We argue that phenotypic plasticity should be broadly construed to encompass a diversity of phenomena spanning several hierarchical levels of organization. Despite seemingly disparate outcomes among different groups of organisms (e.g., the opening/closing of stomata in leaves, adjustments of allocation to growth/reproduction, or the production of different castes in social insects), there are underlying shared processes that initiate these responses. At the most fundamental level, all plastic responses originate at the level of individual cells, which receive and process signals from their environment. The broad variations in physiology, morphology, behavior, etc., that can be produced by a single genotype, can be accounted for by processes regulating gene expression in response to environmental variation. Although evolution of adaptive plasticity may not be possible for some types of environmental signals, in many cases selection has molded responses to environmental variation that generate precise and repeatable patterns of gene expression. We highlight the example of responses of plants to variation in light quality and quantity, mediated via the phytochrome genes. Responses to changes in light at particular stages of plants' life cycles (e.g., seed germination, competition, reproduction) are controlled by different members of this gene family. The mechanistic details of the cell and molecular biology of phytochrome gene action (e.g., their effects on expression of other genes) is outlined. Plasticity of cells and organisms to internal and external environmental signals is pervasive, and represents not just an outcome of evolutionary processes, but also a potentially important molder of them. Phenotypes originally initiated via a plastic response, can be fixed through genetic assimilation as alternate regulatory pathways are shut off. Evolution of mechanisms of plasticity and canalization can both reduce genetic variation, as well as shield it. When the organism encounters novel environmental conditions, this shielded variation may be expressed, revealing hidden reaction norms that represent the raw material for subsequent evolution. 相似文献
49.
Among individuals of female three-spined sticklebacks Gasterosteus aculeatus from a population in the Camargue, southern France, studied in 12 successive years, adult L T ranged from 31–64 mm, clutch size ranged from 33–660 eggs, and mean egg diameter per clutch ranged from 1.15–1.67 mm. Because the population was strictly annual, inter-annual variation corresponded to variation among generations having experienced different environmental conditions. Body mass varied significantly among years, suggesting an effect of varying environmental conditions. Gonad mass and clutch size increased with body mass, but mean egg diameter was not correlated to body mass. Body mass-adjusted gonad mass, interpreted as reproductive effort per clutch, did not vary significantly among years, suggesting that this trait was not influenced by environmental conditions. Body mass-adjusted clutch size and egg size varied significantly among years. Inter-annual variation in body length at breeding, clutch size and egg size was of the same order of magnitude as inter-population variation reported by other authors for this species. During the breeding season, reproductive effort and clutch size tended to increase. Egg size tended to decrease during the breeding season but this seasonal pattern varied among years. Observed life-history variation is discussed both in terms of its evolutionary significance and methodological implications in the study of life-history variation among populations. 相似文献
50.
Soo K O'Rourke MP Khoo PL Steiner KA Wong N Behringer RR Tam PP 《Developmental biology》2002,247(2):251-270
Loss of Twist function in the cranial mesenchyme of the mouse embryo causes failure of closure of the cephalic neural tube and malformation of the branchial arches. In the Twist(-/-) embryo, the expression of molecular markers that signify dorsal forebrain tissues is either absent or reduced, but those associated with ventral tissues display expanded domains of expression. Dorsoventral organization of the mid- and hindbrain and the anterior-posterior pattern of the neural tube are not affected. In the Twist(-/-) embryo, neural crest cells stray from the subectodermal migratory path and the late-migrating subpopulation invades the cell-free zone separating streams of cells going to the first and second branchial arches. Cell transplantation studies reveal that Twist activity is required in the cranial mesenchyme for directing the migration of the neural crest cells, as well as in the neural crest cells within the first branchial arch to achieve correct localization. Twist is also required for the proper differentiation of the first arch tissues into bone, muscle, and teeth. 相似文献