首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2189篇
  免费   169篇
  国内免费   47篇
  2023年   27篇
  2022年   51篇
  2021年   53篇
  2020年   43篇
  2019年   66篇
  2018年   39篇
  2017年   49篇
  2016年   52篇
  2015年   62篇
  2014年   80篇
  2013年   118篇
  2012年   54篇
  2011年   76篇
  2010年   46篇
  2009年   83篇
  2008年   87篇
  2007年   72篇
  2006年   79篇
  2005年   63篇
  2004年   61篇
  2003年   53篇
  2002年   59篇
  2001年   58篇
  2000年   52篇
  1999年   41篇
  1998年   72篇
  1997年   46篇
  1996年   49篇
  1995年   50篇
  1994年   55篇
  1993年   47篇
  1992年   55篇
  1991年   45篇
  1990年   43篇
  1989年   28篇
  1988年   41篇
  1987年   37篇
  1986年   32篇
  1985年   56篇
  1984年   26篇
  1983年   33篇
  1982年   44篇
  1981年   24篇
  1980年   17篇
  1979年   12篇
  1978年   12篇
  1977年   10篇
  1973年   9篇
  1972年   10篇
  1971年   6篇
排序方式: 共有2405条查询结果,搜索用时 15 毫秒
91.
Summary The octavo-lateral efferent system of several anuran species was studied by means of retrograde transport of horseradish peroxidase. This system is organized similarly in all larval anurans and in all adult aglossids. All have two groups of efferent neurons in the nucleus reticularis medialis between the VIIIth and the IXth motor nucleus. The caudal group consists of efferent neurons that supply the posterior lateral-line nerve (NLLp) and a considerably smaller group of neurons supplying both the NLLp and the anterior lateral-line nerve (NLLa). The rostral group is composed of efferent neurons supplying the NLLa, neurons projecting to the inner ear and neurons supplying both the inner ear and the NLLa. Efferent neurons of the VIIIth cranial nerve exhibit a rostrocaudal cytoarchitectonic differentiation. Caudal perikarya, which are rounder in shape than those of the rostral part, have a dendritic projection to the superior olive. It is suggested that this differentiation reflects a functional differentiation of acoustic and vestibular efferent neurons.Labeled neurons were ipsilateral to the site of application of HRP. None were found in the vestibular nuclei or in the cerebellum.Efferent axons projecting to neuromasts of the NLLa leave the medulla with the VIIth nerve, axons projecting to neuromasts of the NLLp exit via the IXth nerve. Cell counts and the observation of axonal branching revealed that efferent units of both the lateral-line and the VIIIth-nerve system supply more than one receptor organ. In contrast to the lateral-line system, dendrites of efferent neurons of the VIIIth nerve project dorsally onto its nuclei, and afferents of the VIIIth nerve project onto efferent neurons. These structures most probably represent a feedback loop between the afferent and efferent systems of the VIIIth cranial nerve.  相似文献   
92.
93.
The central nervous system of the shiverer mouse is known to be severely deficient in myelin. Animals heterozygous for this autosomal-recessive mutation were crossed, and the myelin proteins were examined in the brains and spinal cords of shiverers and unaffected littermates among the offspring. In the brains and spinal cords of nine of the 14 unaffected littermates examined, the quantities of the myelin basic and proteolipid proteins were lower than normal. Furthermore, in the brains of heterozygotes 33 to ~ 150 days old, the myelin basic and proteolipid proteins were reduced in amount, compared to wild-type controls; the myelin basic protein was also present in subnormal amounts in the spinal cords from heterozygous animals at the ages of 17 to 150 days. More severe reductions in the quantities of the myelin proteins were observed in central nervous system tissue from homozygous shiverer mice, and the quantity of the myelin proteolipid protein in the central nervous system of the shiverer mouse, expressed as a ratio to the control value at each age, underwent a developmental decline. In heterozygotes, as well as shiverers, the peripheral nerves were also deficient in the P1 and Pr proteins, which are the same as the basic proteins in rodent central nervous system myelin. The findings regarding heterozygotes suggest that the defective primary gene product in the shiverer mouse could be the myelin basic protein itself or a protein required for a rate-limiting step in the processing of the myelin basic protein.  相似文献   
94.
Identification of a Cholinergic-Specific Antigen Chol-1 as a Ganglioside   总被引:15,自引:11,他引:4  
Abstract: An antiserum specific for cholinergic terminals was used to identify an antigen conserved between Elasmobranchs and mammals. Immunohistochemistry and a cytotoxicity test were used to assay the binding of antibody to mammalian terminals. Torpedo electric organ gangliosides totally abolished antibody binding. The highest inhibitory activity was associated with a single polysialoganglioside band on TLC plates. Neuraminidase altered the migration of the inhibitory activity on TLC plates. Antibody binding was inhibited by ganglioside fractions derived from chicken and mammalian brains. A summary of those tissues in which the antigen has been detected is presented. The possible function of the antigen is discussed.  相似文献   
95.
Abstract: Biochemical evidence suggests that neuroglia are responsive to glucocorticoids, yet previous studies of glucocorticoid localization have typically failed to demonstrate significant uptake by neuroglial cells. To further investigate this problem, we measured glycerol-3-phosphate dehydrogenase (GPDH) activity and glucocorticoid receptor binding capacity in normal rat optic nerves and in those undergoing Wallerian (axonal) degeneration. Binding studies were also performed on hippocampus and anterior pituitary for comparison purposes. Normal optic nerve preparations possessed a high level of GPDH activity that was glucocorticoid-inducible and that increased further following axonal degeneration. Antibody inactivation experiments demonstrated the presence of more enzyme molecules in the degenerating nerve preparations. Correlative immunocytochemical studies found GPDH-positive reaction product only in morphologically identified oligodendrocytes, a result that is consistent with the previously reported localization of this enzyme in rat brain. Optic nerve cytosol fractions displayed substantial high-affinity binding of both dexamethasone (DEX) and corticosterone (CORT) that, like GPDH, was elevated approximately twofold in degenerating nerves. Finally, in vivo accumulation of [3H]DEX and [3H]CORT by optic nerve and other myelinated tracts was examined using nuclear isolation and autoradiographic methods. Although neither steroid was found to be heavily concentrated by these tissues in vivo , a small preference for DEX was observed in the nuclear uptake experiments. These results are discussed in terms of the hypothesis that glial cells are targets for glucocorticoid hormones.  相似文献   
96.
Phospholipid metabolism was studied in rat sciatic nerve during Wallerian degeneration induced by crush injury. Portions of crushed sciatic nerve, incubated with labeled substrates, showed significantly higher phosphatidylcholine synthesis than normal nerve, prior to any measurable alterations of phospholipid composition. Maximum synthesis occurred 3 days after crush injury, at which time the metabolism of other phospholipids was unchanged. After a rapid decrease in biosynthetic activity, a second phase of enhanced phosphatidylcholine synthesis occurred, beginning 6 days after crush injury. Increased incorporation of [33P]phosphate, [2-3H]glycerol, and [Me-14C]choline indicated stimulation of de novo synthesis of phosphatidylcholine 3 days after injury. Neither base exchange reactions nor sequential methylation of ethanolamine phospholipids contributed significantly to phosphatidylcholine synthesis. Assay of certain key enzymes under optimal conditions in subcellular fractions of sciatic nerve revealed higher activities of cholinephosphate cytidyltransferase, choline phosphotransferase, and acyl-CoA:lysophosphatidylcholine acyltransferase in injured nerve, while choline kinase activity remained unchanged. This indicates that stimulation of phosphatidylcholine synthesis occurs via the cytidine nucleotide pathway, as well as by increased acylation of lysophosphatidylcholine. Although the cause of stimulated phosphatidylcholine synthesis remains unexplained, it is possible that trace amounts of lysophospholipids or other metabolites produced by injury-enhanced phospholipase activity may be responsible.  相似文献   
97.
Changes in the activities of UDP-galactose:ceramide galactosyltransferase (CGalT, EC 2.4.1.45), UDP-glucose:ceramide glucosyltransferase (CGlcT, EC 2.4.1.80) and 3'-phosphoadenosine-5'-phosphosulfate (PAPS): galactosylceramide 3'-sulfotransferase (EC 2.8.2.11) over the myelinating period between 12 and 25 days were studied in the brains of control and myelin-deficient rats. Although the activity of galactosyltransferase with ceramides containing hydroxy fatty acids quadrupled in normal male littermates between 14 and 20 days, hardly any increase was observed in the mutant and the activity was less than 10% of control above 20 days of age. With normal fatty acid containing ceramides as acceptors, the activity decreased from 83% of the control at 12 days to approximately 30% after 20 days. Sulfotransferase activity also did not show the normal increase during the 3rd week of life and declined from 60% to 22%. Glucosyltransferase and lysosomal hydrolases in brain and ceramide galactosyltransferase in sciatic nerves appeared to be normal. These results suggest close similarities to the jimpy mutant mouse in which myelin deficiency is also inherited as an x-linked recessive trait.  相似文献   
98.
Abstract: Labeled palmitic acid ([16-14C]palmitate) (0).5 μCi) was injected into rat sciatic nerves in vivo to characterize thc incorporation of this fatty acid into complex peripheral nerve lipids after time lapses of 1 min to 2 weeks. For the first 30 min after intraneural injection, the label was concentrated in nerve diglycerides. Thereafter, the relative diglyccride label declined rapidly, and phospholipid radioactivity rose steadily. After 120 min, phospholipids contained over 70% of the total lipid radioactivity. Among the phospholipids, phosphatidylcholine had the largest percentage of total phospholipid label, and acylation of lysophosphatidylcholine accounted for approximately 75% of this label. With time, there was conversion of [16-14C]palmitate to other long-chain fatty acids by elongation and desaturation. Phosphatidic acid was labeled also, suggesting the operation of the de novo biosynthetic mechanism. However, the specific radioactivity of 1,2-diacylglycerol was much higher than that of phosphatidic acid, suggesting phosphorylation of diglycerides by diglyceride kinase. After nerve section and survival of 2 h to 50 days, the injection of [16-14C]palmitate into the degenerating distal segment revealed an overall decline of phospholipid labeling and a commensurate increase of triglyceride radioactivity. Phosphatidylcholine in degenerating nerve contained a larger percentage of the fatty acid label than that in normal nerve. Almost all of the labeling was due to acylation of lysophosphatidylcholine, implying a much smaller contribution of the de novo pathway. Phosphatidylethanolamine and phosphatidylserine showed a relative loss of radioactivity. The changes were apparent at 1 day, but not at 2 h, suggesting loss of homeostatic control, presumably by interruption of axonal flow. An incidental observation was the stimulation of phosphatidylcholine biosynthesis by acylation of lysophosphatidylcholine in the contralateral unoperated sciatic nerve.  相似文献   
99.
Abstract: Ganglioside composition of rat trigeminal nerve was studied during development in order to understand the changes that occur as a result of cellular differentiation in the nerve. The ganglioside composition of the trigeminal nerve was entirely different from that of brain. The major gangliosides in adult trigeminal nerve were GM3, GD3, and LM1 (sialosyl-lactoneotetraosylceramide or sialosylparagloboside). The structure of LM1 and other gangliosides was established by enzymatic degradation and by analysis of the products of acid hydrolysis. At 2 days after birth, when the Schwann cells were immature, GM3 and GD3 were the major gangliosides in the nerve, 50 and 18 mol %, respectively. As the nerve developed and Schwann cells proliferated and myelinated the axons, the mol % of GM3 and GD3 reduced and that of LM1 steadily increased. Polysialogangliosides did not change drastically with nerve development. The rate of deposition of LM1 in the nerve with age was very similar to that of myelin marker lipids, cerebrosides, and sulfatides; thus, deposition appears to be localized mainly in the rat nerve myelin. LM1 also had long-chain fatty acids 22:0 and 24:0, which are not usually found in CNS gangliosides. The ganglioside pattern of the rat trigeminal nerve was very similar to that of rat sciatic nerve, but was different from that of rabbit and chicken sciatic nerve. The activity of the two key enzymes involved in the metabolism of GM3, viz., CMP-N-acetylneuraminic acid:lactosylceramide sialyltransferase and UDP-N-acetylgalactosamine:GM3-N-acetylgalactosaminyltransferase, was also studied during development of the nerve and brain. The developmental profiles of both enzymes were consistent with the amounts of GM3 present in the nerve.  相似文献   
100.
Abstract: The composition and metabolism of rat sciatic nerve phospholipids were studied 20 weeks after induction of chronic diabetes by intraperitoneal injection of streptozotocin (50 mg/kg). On a wet weight basis the nerves from the diabetic animals showed a 7% decrease in total phospholipid from that of controls and a relative decrease in phosphatidylinositol. Incubations of isolated sciatic nerves of diabetic rats in a medium containing [33P]orthophosphate gave decreased labeling of phosphatidylinositol and substantial changes in the labeling pattern of phosphatidylinositol phosphate and 4,5-bisphosphate from that of controls. The ratio of label in these polyphosphoinositides decreased from 2.5 for normal nerve to about 1.0 for diabetic nerve within a 2-h incubation period. These metabolic alterations were not observed in acutely diabetic animals 5 days after streptozotocin (100 mg/kg) administration. Because polyphosphoinositides may be involved in the control of membrane permeability during axonal conduction, alterations in their relative amounts or turnover rates could be related to the physiological changes of early diabetic neuropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号