首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3502篇
  免费   284篇
  国内免费   94篇
  2024年   16篇
  2023年   62篇
  2022年   86篇
  2021年   94篇
  2020年   90篇
  2019年   108篇
  2018年   77篇
  2017年   85篇
  2016年   86篇
  2015年   92篇
  2014年   145篇
  2013年   211篇
  2012年   103篇
  2011年   116篇
  2010年   77篇
  2009年   137篇
  2008年   133篇
  2007年   124篇
  2006年   108篇
  2005年   100篇
  2004年   101篇
  2003年   82篇
  2002年   100篇
  2001年   83篇
  2000年   73篇
  1999年   48篇
  1998年   97篇
  1997年   60篇
  1996年   75篇
  1995年   73篇
  1994年   76篇
  1993年   76篇
  1992年   84篇
  1991年   71篇
  1990年   58篇
  1989年   46篇
  1988年   56篇
  1987年   55篇
  1986年   60篇
  1985年   80篇
  1984年   56篇
  1983年   64篇
  1982年   73篇
  1981年   42篇
  1980年   40篇
  1979年   22篇
  1978年   13篇
  1977年   14篇
  1976年   12篇
  1973年   11篇
排序方式: 共有3880条查询结果,搜索用时 466 毫秒
141.
A novel potassium-selective channel which is active at membrane potentials between -100 mV and +40 mV has been identified in peripheral myelinated axons of Xenopus laevis using the patch-clamp technique. At negative potentials with 105 mM-K on both sides of the membrane, the channel at 1 kHz resolution showed a series of brief openings and closings interrupted by longer closings, resulting in a flickery bursting activity. Measurements with resolution up to 10 kHz revealed a single-channel conductance of 49 pS with 105 mM-K and 17 pS with 2.5 mM-K on the outer side of the membrane. The channel was selective for K ions over Na ions (PNa/PK = 0.033). The probability of being within a burst in outside-out patches varied from patch to patch (> 0.2, but often > 0.9), and was independent of membrane potential. Open-time histograms were satisfactorily described with a single exponential (tau o = 0.09 msec), closed times with the sum of three exponentials (tau c = 0.13, 5.9, and 36.6 msec). Sensitivity to external tetraethylammonium was comparatively low (IC50 = 19.0 mM). External Cs ions reduced the apparent unitary conductance for inward currents at Em = -90 mV (IC50 = 1.1 mM). Ba and, more potently, Zn ions lowered not only the apparent single-channel conductance but also open probability. The local anesthetic bupivacaine with high potency reduced probability of being within a burst (IC50 = 165 nM). The flickering K channel is clearly different from the other five types of K channels identified so far in the same preparation. We suggest that this channel may form the molecular basis of the resting potential in vertebrate myelinated axons.  相似文献   
142.
Summary The subcellular mechanisms of twitch-force potentiation with paired electrical stimulation was studied in ferret ventricular myocardium using the bioluminescent calcium indicator aequorin. It is demonstrated for the first time that interpolation of an extrasystole in a train of conditioned twitches results in a beat-to-beat change in [Ca2+]i and force. Steady-state twitch force and Ca i 2+ were increased with paired stimulation. Increased [Ca2+]0 in the setting of paired stimulation resulted in an increase in the amplitude of the postextrasystole and associated Ca2+ transient. Verapamil, a Ca2+ channel antagonist, had the opposite effect of increased [Ca2+]0. Postextrasystole potentiation was still present, but diminished in amplitude. These results indicate that postextrasystole potentiation is in part due to a verapamil-depletable store (Ca2+). Postextrasystole potentiation is therefore predominantly dependent on sarcoplasmic reticulum (SR) Ca2+ loading. Ryanodine, an alkaloid which induces Ca2+ leakage from the SR, abolished postextrasystole potentiation; however, in the presence of ryanodine the extrasystole was potentiated. Caffeine, a phosphodiesterase inhibitor which induces SR Ca2+ release and impairs uptake, also abolished postextrasystole potentiation. As with ryanodine there was resultant potentiation of the extrasystole. In the case of caffeine the calcium transient consisted of a second slow component associated with extrasystole twitch potentiation. The results are consistent with sarcolemmal Ca2+ influx playing a role in potentiation of the extrasystole in the presence of an impaired SR. These data indicate that transsarcolemmal Ca2+ influx in the presence of impaired intracellular Ca2+ buffering can directly activate the myofilaments in agreement with reports on human myocardium.Abbreviations C conditioned stimulus - ESI extrasystolic interval - Lmax active tension - PES postextrasystole - PESI postextrasystolic interval - SR sarcoplasmic reticulum - T test stimulus  相似文献   
143.
Summary Chloride-stimulated K+ secretion by Manduca sexta midgut (5th-instar larvae) was measured as K+-carried short-circuit current of the tissue mounted in an Ussing chamber. Microscopic parameters, such as single-channel current and channel density for the rate-determining passive transport step across the basolateral goblet cell membrane (i.e. K+ channels), were estimated by means of current-fluctuation analysis of the K+ channel blockade by haemolymph-side Ba2+ ions. Ba2+ was equally effective with Cl- or gluconate (Glu-) as the principal ambient anion. The Ba2+-induced K+ channel conduction noise is reflected by a Lorentzian, or relaxation, noise component in the power spectrum of the K+ current fluctuations. A reduced Lorentzian plateau value, but an unchanged corner frequency, were observed when Cl- was replaced by Glu-. The results from the analysis of a two-state model of K+ channel block by Ba2+, with respect to the anion-replacement effects, suggest that the observed changes in K+ current and Lorentzian plateau value mirror a complex change of the underlying parameters: Cl- omission reduces single channel current but increases channel density so that the product of single channel current and channel density is smaller in Glu- than in Cl-. It seems likely that basolateral K+ channels (1) are subject to anionic gating ligands, and (2) depend on anions with respect to the rate of K+ transfer through and open K+ channel.Abbreviations a.c. alternating current - single-channel conductance - E K K+ Nernst potential - f frequency contained in current noise - f c corner frequency - Glu- gluconate - G t transepithelial conductance - I sc short-circuit current - I K K+ current - I K(max) maximal K+ current - i single-channel current - K Ba barium inhibition constant - K m Michaelis constant of saturating K+ current - k 01 and k 10 barium association and dissociation rate constant, respectively - M K+ channel density - S f power density - S o Lorentzian plateau value - P o channel-open probability - P K K+ permeability - V sc cellular potential at short-circuit These results have already been presented in part, at the 1989 joint meeting of the German and Israel Physiological Societies in Jerusalem (Zeiske et al. 1990).  相似文献   
144.
The electric fish, Eigenmannia, will smoothly shift the frequency of its electric organ discharge away from an interfering electric signal. This shift in frequency is called the jamming avoidance response (JAR). In this article, we analyze the behavioral development of the JAR and the anatomical development of structures critical for the performance of the JAR. The JAR first appears when juvenile Eigenmannia are approximately 1 month old, at a total length of 13–18 mm. We have found that the establishment of much of the sensory periphery and of central connections precedes the onset of the JAR. We describe three aspects of the behavioral development of the JAR: (a) the onset and development of the behavior is closely correlated with size, not age; (b) the magnitude (in Hz) of the JAR increases with size until the juveniles display values within the adult range (10–20 Hz) at a total length of 25–30 mm; and (3) the JAR does not require prior experience or exposure to electrical signals. Raised in total electrical isolation from the egg stage, animals tested at a total length of 25 mm performed a correct JAR when first exposed to the stimulus. We examine the development of anatomical areas important for the performance of the JAR: the peripheral electrosensory system (mechano- and electroreceptors and peripheral nerves); and central electrosensory pathways and nuclei [the electrosensory lateral line lobe (ELL), the lateral lemniscus, the torus semicircularis, and the pacemaker nucleus]. The first recognizable structures in the developing electrosensory system are the peripheral neurites of the anterior lateral line nerve. The afferent nerves are established by day 2, which is prior to the formation of receptors in the epidermis. Thus, the neurites wait for their targets. This sequence of events suggests that receptor formation may be induced by innervation of primordial cells within the epidermis. Mechanoreceptors are first formed between day 3 and 4, while electroreceptors are first formed on day 7. Electroreceptor multiplication is observed for the first time at an age of 25 days and correlates with the onset of the JAR. The somata of the anterior lateral line nerve ganglion project afferents out to peripheral electroreceptors and also send axons centrally into the ELL. The first electroreceptive axons invade the ELL by day 6, and presumably a rough somatotopic organization and segmentation within the ELL may arise as early as day 7. Axonal projections from the ELL to the torus develop after day 18. Within the torus semicircularis, giant cells are necessary for the performance of the JAR. Giant cell numbers increase exponentially during development and the onset of the JAR coincides with a minimum of at least 150 giant cells and the attainment of a total length of at least 15 mm and at least 150 giant cells. Pacemaker and relay cells comprise the adult Eigenmannia pacemaker nucleus. The growth and differentiation of these cell types also correlates with the onset of the JAR in developing animals. We describe a gradual improvement of sensory abilities, as opposed to an explosive onset of the mature JAR. We further suggest that this may be a rule common in most developing behavioral systems. © 1992 John Wiley & Sons, Inc.  相似文献   
145.
Summary The morphology and distribution of the sensory neurones of the pudendal nerve within the spinal ganglia of rats were investigated by use of horseradish peroxidase (HRP). The labelling was visualized in diaminobenzidine (DAB) or tetramethyl-benzidine (TMB)-stained sections. Injection of HRP directly into the pudendal nerve labelled perikarya predominantly in the sixth lumbar DRG (L6). Following injection of HRP into the scrotal skin, however, additional cells were labelled in L5 and SI. Labelling was invariably unilateral. Approximately equal numbers of small (<30 m) and large neurones (>40 m) were labelled following subcutaneous injections although injections into the nerve marked twice as many small cells as large cells. This suggests that, in the rat, most of the small-diameter fibres within the pudendal nerve ascend through L6. Although a cluster of neurones was observed in one experiment, the remaining 25 experiments did not reveal any somatotopic arrangement since the labelled perikarya were distributed evenly throughout the ganglion. Similar numbers of retrogradely labelled neurones (somatopetal transport of the tracer) were observed in both DAB- and TMB-stained sections, although TMB allowed the demonstration of anterograde (somatofugal) HRP transport by terminal labelling in the superficial laminae of the lumbar spinal cord, extending into laminae II–IV.Partially supported by grants from the DFG to HWK (Ko 758/1)  相似文献   
146.
Summary The proximal truncus arteriosus of the lizard Trachydosaurus rugosus was studied with light-, fluorescence and electron-microscopical techniques. Three vessels comprised the truncus: the pulmonary, left aortic, and caroticoaortic arteries. Right and left truncal nerves, each derived from the ipsilateral vagus nerve, innervated the truncus, particularly its proximal 3 mm.Ultrastructurally, the nerves had a variety of appearances: some were clearly adrenergic, c-type or p-type. A number of profiles contained large numbers of mitochondria and were classified as sensory. Some profiles defied exact classification, having characteristics common to two different types of profile.Within the outer medial layers, profiles up to 7 m in diameter were found. These contained large numbers of mitochondria, myelin bodies and structures intermediate between the two. In addition, the profiles contained large amounts of glycogen and small numbers of vesicles. These nerve fibres were classified as baroreceptors, since they closely resemble carotid sinus and aortic arch baroreceptors in mammals.Large numbers of chromaffin cells were found, particularly in the common wall of the pulmonary and left aortic arteries. Many of these cells emitted a long tapering process, which sometimes entered a nearby nerve bundle. Sensory, p-type and c-type profiles, but not adrenergic profiles, made extensive close contacts with chromaffin cells.  相似文献   
147.
Summary The octavo-lateral efferent system of several anuran species was studied by means of retrograde transport of horseradish peroxidase. This system is organized similarly in all larval anurans and in all adult aglossids. All have two groups of efferent neurons in the nucleus reticularis medialis between the VIIIth and the IXth motor nucleus. The caudal group consists of efferent neurons that supply the posterior lateral-line nerve (NLLp) and a considerably smaller group of neurons supplying both the NLLp and the anterior lateral-line nerve (NLLa). The rostral group is composed of efferent neurons supplying the NLLa, neurons projecting to the inner ear and neurons supplying both the inner ear and the NLLa. Efferent neurons of the VIIIth cranial nerve exhibit a rostrocaudal cytoarchitectonic differentiation. Caudal perikarya, which are rounder in shape than those of the rostral part, have a dendritic projection to the superior olive. It is suggested that this differentiation reflects a functional differentiation of acoustic and vestibular efferent neurons.Labeled neurons were ipsilateral to the site of application of HRP. None were found in the vestibular nuclei or in the cerebellum.Efferent axons projecting to neuromasts of the NLLa leave the medulla with the VIIth nerve, axons projecting to neuromasts of the NLLp exit via the IXth nerve. Cell counts and the observation of axonal branching revealed that efferent units of both the lateral-line and the VIIIth-nerve system supply more than one receptor organ. In contrast to the lateral-line system, dendrites of efferent neurons of the VIIIth nerve project dorsally onto its nuclei, and afferents of the VIIIth nerve project onto efferent neurons. These structures most probably represent a feedback loop between the afferent and efferent systems of the VIIIth cranial nerve.  相似文献   
148.
149.
The central nervous system of the shiverer mouse is known to be severely deficient in myelin. Animals heterozygous for this autosomal-recessive mutation were crossed, and the myelin proteins were examined in the brains and spinal cords of shiverers and unaffected littermates among the offspring. In the brains and spinal cords of nine of the 14 unaffected littermates examined, the quantities of the myelin basic and proteolipid proteins were lower than normal. Furthermore, in the brains of heterozygotes 33 to ~ 150 days old, the myelin basic and proteolipid proteins were reduced in amount, compared to wild-type controls; the myelin basic protein was also present in subnormal amounts in the spinal cords from heterozygous animals at the ages of 17 to 150 days. More severe reductions in the quantities of the myelin proteins were observed in central nervous system tissue from homozygous shiverer mice, and the quantity of the myelin proteolipid protein in the central nervous system of the shiverer mouse, expressed as a ratio to the control value at each age, underwent a developmental decline. In heterozygotes, as well as shiverers, the peripheral nerves were also deficient in the P1 and Pr proteins, which are the same as the basic proteins in rodent central nervous system myelin. The findings regarding heterozygotes suggest that the defective primary gene product in the shiverer mouse could be the myelin basic protein itself or a protein required for a rate-limiting step in the processing of the myelin basic protein.  相似文献   
150.
Abstract: The catecholamine secretory function of a preparation of isolated bovine adrenal chromaffin cells has been further characterized under conditions designed to elucidate the mechanism of calcium channel activation and the possible role of cytoskeletal elements in stimulus-secretion coupling. Three related sets of data were obtained: (1) Differences in kinetics, Ca dependence, strength, and additivity of the secretory response to acetylcholine (ACh) versus excess K; (2) the effects on secretion of the Ca channel-blocking agents, Ni, Mg, and verapamil; and (3) the Ca dependence of vinblastine action on ACh- and K-evoked secretion. The results suggest that a major portion of the Ca influx required for catecholamine release enters the cell via voltage-dependent Ca channels with some additional Ca influx via the ACh receptor channel. Comparison of the present secretion data with corresponding known electrophysiological properties of isolated chromaffin cells provides added evidence for a role of chromaffin cell action potentials in regulation of Ca influx and the secretory response. Elevated Ca concentrations enhanced K-evoked secretion to levels comparable to that of ACh but did not induce a vinblastine block of K-evoked release. This provides further evidence against a role of microtubules in the common exocytosis event per se. However, a role of cytoskeletal elements in directing the movement of secretory granules, or an action of vinblastine at cholinergic receptors, remain distinct possibilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号