首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2183篇
  免费   169篇
  国内免费   52篇
  2404篇
  2023年   27篇
  2022年   51篇
  2021年   53篇
  2020年   48篇
  2019年   69篇
  2018年   40篇
  2017年   51篇
  2016年   53篇
  2015年   63篇
  2014年   84篇
  2013年   120篇
  2012年   56篇
  2011年   77篇
  2010年   48篇
  2009年   80篇
  2008年   92篇
  2007年   75篇
  2006年   81篇
  2005年   66篇
  2004年   64篇
  2003年   54篇
  2002年   63篇
  2001年   59篇
  2000年   53篇
  1999年   42篇
  1998年   71篇
  1997年   43篇
  1996年   48篇
  1995年   46篇
  1994年   53篇
  1993年   47篇
  1992年   52篇
  1991年   44篇
  1990年   41篇
  1989年   26篇
  1988年   40篇
  1987年   35篇
  1986年   31篇
  1985年   55篇
  1984年   25篇
  1983年   30篇
  1982年   44篇
  1981年   21篇
  1980年   17篇
  1979年   8篇
  1978年   11篇
  1977年   8篇
  1976年   6篇
  1973年   8篇
  1972年   9篇
排序方式: 共有2404条查询结果,搜索用时 10 毫秒
51.
在大鼠的脑室内注入TRH(三肽酰胺),观察其对大鼠肝胆汁分泌的影响.实验结果表明,侧脑室内注入TRH对胆汁分泌量有明显的增强作用,并且随TRH剂量加大其作用逐渐增强.而且在侧脑室内注入TRH期间,胆汁中K+、Cl-、Na+、HCO3-离子的排出量亦有增加.其机理在于,侧脑室内注入TRH,激活中枢胆碱能系统,并通过送走神经而使肝的新陈代谢发生变化.  相似文献   
52.
Abstract: The adenylyl cyclase-cyclic AMP (cAMP) second messenger pathway has been proposed to regulate myelin gene expression; however, a clear correlation between endogenous cAMP levels and myelin-specific mRNA levels has never been demonstrated during the induction or maintenance of differentiation by the myelinating Schwann cell. Endogenous cAMP levels decreased to 8–10% of normal nerve by 3 days after crush or permanent transection injury of adult rat sciatic nerve. Whereas levels remained low after transection injury, cAMP levels reached only 27% of the normal values by 35 days after crush injury. Because P0 mRNA levels were 60% of normal levels by 14 days and 100% by 21 days after crush injury, cAMP increased only well after P0 gene induction. cAMP, therefore, does not appear to trigger myelin gene induction but may be involved in myelin assembly or maintenance. Forskolin, an activator of adenylyl cyclase, increased endoneurial cAMP levels only in the normal nerve, and in the crushed nerve beginning at 16 days after injury, but at no time in the transected nerve. Only by treating transected nerve with 3-isobutyl-1-methylxanthine (IBMX), an inhibitor of cAMP phosphodiesterases, in combination with forskolin was it possible to increase cAMP levels. No induction of myelin genes, however, was observed with short- or long-term treatment with IBMX and forskolin in the transected nerve. A three-fold increase in phosphodiesterase activity was observed at 35 days after both injuries, and a nonmyelinated nerve was shown to have even higher activity. These experiments, therefore, suggest an important role for phosphodiesterase in the inactivation of this second messenger-dependent stimuli when Schwann cells are non-myelinating, such as after sciatic nerve injury or in the nonmyelinated nerve, which again implies that cAMP may be required for the maintenance of the myelin sheath.  相似文献   
53.
神经生长因子结构与功能研究进展   总被引:2,自引:0,他引:2  
神经生长因子(NGF)是神经营养因子家族的典型代表, 它控制着脊椎动物周围和中枢神经系统中部分神经元的发育和存活.NGF的三维结构是以“胱氨酸结”和β折叠为基础,它以二聚体的形式结合细胞表面的受体从而发生生物学效应.参与这些反应的氨基酸残基已通过化学修饰和定点突变法加以确定,这有助于更进一步理解其结构与功能的关系.  相似文献   
54.
Abstract: Three isoforms of catalytic α subunits and two isoforms of β subunits of Na+,K+-ATPase were detected in rat sciatic nerves by western blotting. Unlike the enzyme in brain, sciatic nerve Na+,K+-ATPase was highly resistant to ouabain. The ouabain-resistant α1 isoform was demonstrated to be the predominant form in rat intact sciatic nerve by quantitative densitometric analysis and is mainly responsible for sciatic nerve Na+,K+-ATPase activity. After sciatic nerve injury, the α3 and β1 isoforms completely disappeared from the distal segment owing to Wallerian degeneration. In contrast, α2 and β2 isoform expression and Na+,K+-ATPase activity sensitive to pyrithiamine (a specific inhibitor of the α2 isoform) were markedly increased in Schwann cells in the distal segment of the injured sciatic nerve. These latter levels returned to baseline with nerve regeneration. Our results suggest that α3 and β1 isoforms are exclusive for the axon and α2 and β2 isoforms are exclusive for the Schwann cell, although axonal contact regulates α2 and β2 isoform expressions. Because the β2 isoform of Na+,K+-ATPase is known as an adhesion molecule on glia (AMOG), increased expression of AMOG/β2 on Schwann cells in the segment distal to sciatic nerve injury suggests that AMOG/β2 may act as an adhesion molecule in peripheral nerve regeneration.  相似文献   
55.
革胡子鲇上颌须离体标本味觉反应的测定   总被引:1,自引:0,他引:1  
龙天澄  黄溢明 《动物学报》1995,41(2):158-166
本实验采用革胡子鲇离体上颌须-传入神经标本,记录传入神经电活动,测定了须部味蕾对动物组织浸提液、氨基酸、酸盐化合物等多种化学刺激的反应。发现某些物质有较强的刺激作用。另外,机械刺激也引起较强的反应。分析传入神经单纤维的记录结果,可将化学刺激引起的味觉反应分为3种单元类型:(1)对精氨酸特别敏感;(2)对柠檬酸和氯化胺有较强的反应;(3)对多种刺激都有一定的反应。实验表明,革胡子鲇的须部味蕾可能是一  相似文献   
56.
To examine the influence of the spectral characteristics of underwater light on spectral sensitivity of the ON and OFF visual pathways, compound action potential recordings were made from retinal ganglion cells of threespine stickleback from different photic regimes. In fish from a red-shifted photic regime (P50 680 nm for downwelling light at 1m), peak sensitivity of both the ON and OFF pathways was limited to long wavelength light (max 600–620). In contrast, the ON pathway of fish from a comparatively blue-shifted (P50 566 nm) photic regime exhibited sensitivity to medium (max 540–560) and long (max 600 nm) wavelengths, while the OFF pathway exhibited peak sensitivity to only medium (max 540 nm) wavelength light. In a third population, where the the ambient light is moderately red-shifted (P50 629 nm), the ON pathway once again exhibited only a long wavelength sensitivity peak at 620 nm, while the OFF pathway exhibited sensitivity to both medium (max 560 nm) and long (max 600–620 nm) wavelength light. These findings suggest that the photic environment plays an integral role in shaping spectral sensitivity of the ON and OFF pathways.  相似文献   
57.
Summary Tannic acid in glutaraldehyde was used to stain microtubules in myelinated and unmyelinated axons of rat sciatic nerve. In the majority of areas the tannic acid failed to penetrate the unmyelinated axons whilst penetrating neighbouring myelinated axons, suggesting a difference in the ability of the two types of nerves to exclude tannic acid. Where tannic acid had penetrated the unmyelinated axons the 13 protofilament substructure and size of the microtubules appeared identical to those seen in the myelinated axons.  相似文献   
58.
Endopeptidase-24.11 is a 90-kDa surface glycoprotein with the ability to hydrolyze a variety of biologically active peptides. Interest in this enzyme is based on the consensus that it may play a role in the termination of peptide signals in the central nervous system. In the present study, we have investigated the distribution of endopeptidase-24.11 in two nerves of the peripheral nervous system of newborn pigs: the sciatic, composed of a mixture of myelinated and nonmyelinated axons, and cervical sympathetic trunk in which greater than 99% of the axons are nonmyelinated. The endopeptidase was monitored enzymatically, as well as by immunoblotting and immunocytochemistry using mono- and polyclonal anti-endopeptidase antibodies. Endopeptidase-24.11 was detected in both the sciatic nerve and the cervical sympathetic trunk. Membrane preparations from sciatic nerve hydrolyzed 125I-insulin B-chain, and more than 50% of the activity was inhibited by phosphoramidon with an IC50 concentration of 3.2 nM. Moreover, a 90-kDa polypeptide was detected by immunoblotting of sciatic nerve membranes. The type of cells expressing the endopeptidase was determined by immunohistochemistry. In teased nerve preparations, these cells were identified morphologically as myelin- and non-myelin-forming Schwann cells. Endopeptidase-24.11 was also expressed by cultured Schwann cells from sciatic nerve and cervical sympathetic trunk maintained for 3 h in vitro. The presence of endopeptidase-24.11 on the Schwann cell surface raises the possibility of a potential role for the enzyme in nerve development and/or regeneration.  相似文献   
59.
Apolipoprotein E is synthesized and secreted by rat sciatic nerve consequent to several types of injury. It has been proposed that endoneurial apolipoprotein E, in analogy to its role in systemic cholesterol transport, is involved in the salvage and reutilization of myelin cholesterol during degeneration and regeneration. To test this hypothesis, nerve lipids were prelabeled via intraneural injection of [3H]acetate. Four weeks later the nerves were crushed. From 1 to 12 weeks later, crushed nerves were examined for extracellular lipoprotein-bound cholesterol label. By 2 weeks after injury, 10% of the endoneurial lipid label was in a soluble form that was releasable into incubation medium. This released fraction was enriched in labeled cholesterol, and its labeled lipid composition was constant, in contrast to the changing distribution of label in the nerve with time after injury. On a KBr gradient, the released lipid label cofractionated with the released apolipoprotein E at densities similar to that of lipoproteins. These data indicate that at least some myelin cholesterol in injured nerve becomes associated with apolipoprotein E-containing lipoproteins and thus is available for reutilization via the hypothesized model.  相似文献   
60.
The effects of muscarinic agonists and depolarizing agents on inositol phospholipid hydrolysis in the rabbit vagus nerve were assessed by the measurement of [3H]inositol monophosphate production in nerves that had been preincubated with [3H]inositol. After 1 h of drug action, carbachol, oxotremorine, and arecoline increased the inositol monophosphate accumulation, though the maximal increase induced by these agonists differed. Addition of the muscarinic antagonists atropine or pirenzepine shifted the carbachol dose-response curves to the right, without decreasing the carbachol maximal stimulatory effects. The KB for pirenzepine was 35 nM, which is characteristic of muscarinic high-affinity binding sites coupled to phosphoinositide turnover and often associated with the M1 receptor subtype. On the other hand, agents known to depolarize or to increase the intracellular Ca2+ concentration, e.g., elevated extracellular K+, ouabain, Ca2+, and the Ca2+ ionophore A23187, also increased inositol monophosphate accumulation. These effects were not mediated by the release of acetylcholine, as suggested by the fact that they could not be potentiated by the addition of physostigmine nor inhibited by the addition of atropine. The Ca(2+)-channel antagonist Cd2+, also known to inhibit the Na+/Ca2+ exchanger, was able to block the effects of K+ and ouabain, but did not alter those of carbachol. These results suggest that depolarizing agents increase inositol monophosphate accumulation in part through elevation of the intracellular Ca2+ concentration and that muscarinic receptors coupled to phosphoinositide turnover are present along the trunk of the rabbit vagus nerve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号