首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   534篇
  免费   96篇
  国内免费   17篇
  647篇
  2023年   16篇
  2022年   16篇
  2021年   31篇
  2020年   38篇
  2019年   43篇
  2018年   40篇
  2017年   35篇
  2016年   37篇
  2015年   25篇
  2014年   37篇
  2013年   50篇
  2012年   38篇
  2011年   34篇
  2010年   22篇
  2009年   14篇
  2008年   18篇
  2007年   21篇
  2006年   15篇
  2005年   21篇
  2004年   12篇
  2003年   8篇
  2002年   16篇
  2001年   12篇
  2000年   9篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有647条查询结果,搜索用时 0 毫秒
31.
The sterile alpha motif or SAM domain is one of the most frequently present protein interaction modules with diverse functional attributions. SAM domain of the Ste11 protein of budding yeast plays important roles in mitogen‐activated protein kinase cascades. In the current study, urea‐induced, at subdenaturing concentrations, structural, and dynamical changes in the Ste11 SAM domain have been investigated by nuclear magnetic resonance spectroscopy. Our study revealed that a number of residues from Helix 1 and Helix 5 of the Ste11 SAM domain display plausible alternate conformational states and largest chemical shift perturbations at low urea concentrations. Amide proton (H/D) exchange experiments indicated that Helix 1, loop, and Helix 5 become more susceptible to solvent exchange with increased concentrations of urea. Notably, Helix 1 and Helix 5 are directly involved in binding interactions of the Ste11 SAM domain. Our data further demonstrate that the existence of alternate conformational states around the regions involved in dimeric interactions in native or near native conditions. Proteins 2014; 82:2957–2969. © 2014 Wiley Periodicals, Inc.  相似文献   
32.
A near infrared spectroscopic method was developed to determine drug content in a 20% (wt/wt) ibuprofen and spray-dried hydous lactose blend. A blending profile was obtained after blending for 0.5, 1, 3, 5, 10, and 20 minutes. Stream sampling was used to collect about 20 blend samples at each of the blending times from a laboratory scale V-blender. The samples collected were used to develop a near infrared calibration model. The calibration model was then used to determine the drug content of unknown samples from 2 validation blends. The validation blends were not included in the calibration model; they were used to evaluate the effectiveness of the calibration model. A total of 45 samples from the 2 validation blends were predicted by the near infrared calibration model and then analyzed by a validated UV spectrophotometric method. The root mean square error of prediction for the first validation blend was 5.69 mg/g and 3.30 mg/g for the samples from the second blend. A paired t test at the 95% confidence level did not indicate any differences between the drug content predicted by the near infrared spectroscopy (NIRS) method and the validated UV method for the 2 blends. The results show that the NIRS method could be developed while the blending profile is generated and used to thoroughly characterize a new formulation during development by analyzing a large number of samples. The new formulation could be transferred to a manufacturing plant with an NIRS method to facilitate blend uniformity analysis.  相似文献   
33.
The 2-His-1-carboxylate triad is an Fe(II)-binding motif common to several enzyme families. Within the catalytic cycle, the metal ion seems to alter between hexa- and pentacoordination, providing an open space in the Fe moiety for dioxygen binding. Anyhow, based on crystallographic studies, the picture is not fully consistent as different coordination numbers are reported for similar states. Moreover, the orientation of the metal-coordinating carboxylate varies in these studies. These differences are reflected in the XANES spectra analyzed in this paper. For isolated tyrosine and phenylalanine hydroxylase, the different active-site structures postulated by protein crystallography and further improved using spectroscopic data result in calculated XANES pattern that resemble very well the experiments. This work shows that structural differences in the non-coordinated oxygen of the carboxylate have no effect in the EXAFS but cause a change in the white-line intensity that can be successfully modeled within the muffin-tin approximation in small clusters. Thus, the study shows a way to analyze the 'carboxylate shift'. This highlights the potential of XANES analysis and clearly shows that the mentioned structural differences are present in solution as well, and does neither reflect the crystallization artifacts nor result from radiation damage or lacking resolution.  相似文献   
34.
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L?1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L?1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017  相似文献   
35.
To date, several fluorescent probes modified by a single targeting agent have been explored. However, studies on the preparation of dual‐function quantum dot (QD) fluorescent probes with dual‐targeting action and a therapeutic effect are rare. Here, a dual‐targeting CdTe/CdS QD fluorescent probe with a bovine serum albumin–glycyrrhetinic acid conjugate and arginine‐glycine‐aspartic acid was successfully prepared that could induce the apoptosis of liver cancer cells and showed enhanced targeting in in vitro cell imaging. Therefore, the as‐prepared fluorescent probe in this work is an efficient diagnostic tool for the simultaneous detection of liver cancer and breast cancer cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
36.
Near infrared spectroscopy is used clinically to investigate patterns of change in cerebral oxygenation. We have shown that differences reported between authors are likely the result of computer encoding errors in the manipulation of matrices. Current methods compute the inverse of a non-square matrix to derive chromophore concentration values, and solution of another non-square matrix to derive polynomial coefficients of a least squares best fit curve from which the first derivative can be used to estimate blood flow values. Encoding of these pseudo inverses involves too many nested looping steps to easily identify encoding errors. We have given C/C++ source code along with sample numerical values at the termination of each loop within the algorithm. This provides counter checking for future software development by other programmers, and also permits other investigators to report whether the software used for their experiments agrees with previously published material.  相似文献   
37.
We found the 2′,5′-oligoadenylate synthetase-like (OASL) gene to be significantly elevated by high virus loads in human liver infected with hepatitis C virus (HCV). Here, we determined whether OASL inhibited HCV replication using an in vitro system. We constructed three expression vectors of OASL to produce isoform a (OASLa), isoform b (OASLb), and the C-terminal ubiquitin-like domain of isoform a (Ub). When Huh7 JFH-1 HCV replicon cells were separately transfected with these three vectors, colony formation of HCV-replicating cells was inhibited by 95%, 94%, and 65%, respectively. Both OASLa and OASLb were also inhibitory for cells as well as the virus because colony formation of OASL-producing cells was reduced to 41% and 8%, respectively. Stable Huh7 clones producing each of the three OASLs were established and assessed for their inhibition of HCV replication using luciferase reporter gene-containing JFH-1 replicon RNA. HCV replication was inhibited by 50-90% in several stable OASL clones. Association analysis in six Ub clones expressing different levels of Ub mRNA showed that the degree of inhibition of HCV replication was significantly associated with the amount of Ub present. In conclusion, OASL possesses two domains with HCV inhibitory activity. The N-terminal OAS-homology domain without OAS activity is inhibitory for cell growth as well as HCV replication, whereas C-terminal Ub is inhibitory only for HCV replication. Therefore, OASLa, a major isoform of this molecule induced in human liver, may mediate anti-HCV activity through two different domains.  相似文献   
38.
We have developed a new NIR fluorescent probe based on an ytterbium(III) (E)‐1‐(pyridin‐2‐yl‐diazenyl)naphthalen‐2‐ol (PAN) complex. This probe emits near‐infrared luminescence derived from the Yb ion through excitation of the PAN moiety with visible light (λex = 530 nm, λem = 975 nm). The results support the possible utility of the probe for in vivo fluorescence molecular imaging. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
39.
There are many challenges associated with in situ collection of near infrared (NIR) spectra in a fermentation broth, particularly for highly aerated and agitated fermentations with filamentous organisms. In this study, antibiotic fermentation by the filamentous bacterium Streptomyces coelicolor was used as a model process. Partial least squares (PLS) regression models were calibrated for glucose and ammonium based on NIR spectra collected in situ. To ensure that the models were calibrated based on analyte‐specific information, semisynthetic samples were used for model calibration in addition to data from standard batches. Thereby, part of the inherent correlation between the analytes could be eliminated. The set of semisynthetic samples were generated from fermentation broth from five separate fermentations to which different amounts of glucose, ammonium, and biomass were added. This method has previously been used off line but never before in situ. The use of semisynthetic samples along with validation on an independent batch provided a critical and realistic evaluation of analyte‐specific models based on in situ NIR spectroscopy. The prediction of glucose was highly satisfactory resulting in a RMSEP of 1.1 g/L. The prediction of ammonium based on NIR spectra collected in situ was not satisfactory. A comparison with models calibrated based on NIR spectra collected off line suggested that this is caused by signal attenuation in the optical fibers in the region above 2,000 nm; a region which contains important absorption bands for ammonium. For improved predictions of ammonium in situ, it is suggested to focus efforts on enhancing the signal in that particular region. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
40.
The use of existing drugs for new therapeutic applications, commonly referred to as drug repositioning, is a way for fast and cost-efficient drug discovery. Drug repositioning in oncology is commonly initiated by in vitro experimental evidence that a drug exhibits anticancer cytotoxicity. Any independent verification that the observed effects in vitro may be valid in a clinical setting, and that the drug could potentially affect patient survival in vivo is of paramount importance. Despite considerable recent efforts in computational drug repositioning, none of the studies have considered patient survival information in modelling the potential of existing/new drugs in the management of cancer. Therefore, we have developed DRUGSURV; this is the first computational tool to estimate the potential effects of a drug using patient survival information derived from clinical cancer expression data sets. DRUGSURV provides statistical evidence that a drug can affect survival outcome in particular clinical conditions to justify further investigation of the drug anticancer potential and to guide clinical trial design. DRUGSURV covers both approved drugs (∼1700) as well as experimental drugs (∼5000) and is freely available at http://www.bioprofiling.de/drugsurv.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号