首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   593篇
  免费   27篇
  国内免费   2篇
  622篇
  2023年   2篇
  2022年   6篇
  2020年   1篇
  2019年   15篇
  2018年   15篇
  2017年   12篇
  2016年   11篇
  2015年   11篇
  2014年   47篇
  2013年   30篇
  2012年   18篇
  2011年   44篇
  2010年   24篇
  2009年   33篇
  2008年   25篇
  2007年   28篇
  2006年   24篇
  2005年   25篇
  2004年   15篇
  2003年   23篇
  2002年   20篇
  2001年   7篇
  2000年   8篇
  1999年   7篇
  1998年   8篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   7篇
  1993年   6篇
  1992年   4篇
  1991年   7篇
  1990年   8篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   15篇
  1983年   17篇
  1982年   15篇
  1981年   6篇
  1980年   9篇
  1979年   6篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   5篇
  1974年   4篇
  1973年   2篇
排序方式: 共有622条查询结果,搜索用时 15 毫秒
41.
Most mitochondrial carriers carry out equimolar exchange of substrates and they are believed widely to exist as homo-dimers. Here we show by differential tagging that the yeast mitochondrial ADP/ATP carrier AAC2 is a monomer in mild detergents. Carriers with and without six-histidine or hemagglutinin tags were co-expressed in defined molar ratios in yeast mitochondrial membranes. Their specific transport activity was unaffected by tagging or by co-expression. The co-expressed carriers were extracted from the membranes with mild detergents and purified rapidly by affinity chromatography. All of the untagged carriers were in the flow-through of the affinity column, whereas all of the tagged carriers bound to the column and were eluted subsequently, showing that stable dimers, consisting of associated tagged and untagged carriers, were not present. The specific inhibitors carboxyatractyloside and bongkrekic acid and the substrates ADP, ATP and ADP plus ATP were added during the experiments to determine whether lack of association might have been caused by carriers being prevented from cycling through the various states in the transport cycle where dimers might form. All of the protein was accounted for, but stable dimers were not detected in any of these conditions, showing that yeast ADP/ATP carriers are monomeric in detergents in agreement with their hydrodynamic properties and with their structure. Since strong interactions between monomers were not observed in any part of the transport cycle, it is highly unlikely that the carriers function cooperatively. Therefore, transport mechanisms need to be considered in which the carrier is operational as a monomer.  相似文献   
42.
Inclusion of dithiothreitol (DTT) in the extraction buffer and pre-incubation of apple leaf ADP-glucose pyrophosphorylase (AGPase) with DTT resulted in a decrease in AGPase activity whether the assay was performed in the presence or absence of 3-phosphoglycerate (PGA). When PGA was included in the pre-incubation mixture or when pre-incubation of AGPase with PGA was followed by DTT, the latter did not cause any decrease in AGPase activity. However, once AGPase was decreased by DTT, subsequent incubation of the enzyme with PGA did not reverse the decrease. Pre-incubation of AGPase from leaves of Arabidopsis thaliana, sorghum, soybean, tobacco, spinach, wheat, barley, tomato and potato, and tubers of potato with DTT, generally caused a decrease in AGPase activity when assayed in the presence of PGA. When assayed in the absence of PGA, however, a diverse response of AGPase was observed among species to pre-incubation with DTT. The activity of AGPase from potato tubers was increased by DTT; the activity of AGPase from both potato and tomato leaves was not affected by DTT; the activity of AGPase from leaves of other species was decreased by DTT. It is concluded that DTT decreases in vitro activity of AGPase from leaves of apple and many other plant species such that DTT should not be routinely included in the extraction or assay mixture of leaf AGPase.  相似文献   
43.
The endocytic trafficking of the cation-independent mannose 6-phosphate receptor (CI-MPR) involves multiple sorting steps. A cluster of acidic amino acids followed by a dileucine motif in the cytoplasmic tail has been proposed to mediate receptor sorting from the trans Golgi network (TGN) to late endosomes. Mutations in this motif impair lysosomal enzyme sorting by preventing association of CI-MPR with coat proteins. The role of the acidic cluster/dileucine motif in the post-endocytic transport of the receptor was examined using the CI-MPR mutants, AC01 and D160E (Chen HJ, Yuan J, Lobel P. J Biol Chem 1997;272:7003-7012). Following internalization, wild type (WT) CI-MPR is transported through sorting endosomes into the endocytic recycling compartment (ERC), after which it traffics to the TGN and other organelles. However, the mutants localize mostly to the ERC and only a small portion reaches the TGN, suggesting that the sorting of the CI-MPR mutants from the ERC into the TGN is severely impaired. We observed no defect in receptor internalization or in the rate of tail mutant recycling to the cell surface compared to the WT. These results demonstrate that the acidic cluster/dileucine motif of CI-MPR is critical for receptor sorting at early stages of intracellular transport following endocytosis.  相似文献   
44.
Microglia, the innate immune cells of the CNS, play a pivotal role in brain injury and disease. Microglia are extremely motile; their highly ramified processes constantly survey the brain parenchyma, and they respond promptly to brain damage with targeted process movement toward the injury site. Microglia play a key role in brain development and function by pruning synapses during development, phagocytosing apoptotic newborn neurons, and regulating neuronal activity by direct microglia-neuron or indirect microglia-astrocyte-neuron interactions, which all depend on their process motility. This review highlights recent discoveries about microglial dynamics, focusing on the receptors, ion channels, and signaling pathways involved.  相似文献   
45.
Regulated secretion is a central issue for the specific function of many cells; for instance, mammalian sperm acrosomal exocytosis is essential for egg fertilization. ARF6 (ADP-ribosylation factor 6) is a small GTPase implicated in exocytosis, but its downstream effectors remain elusive in this process. We combined biochemical, functional, and microscopy-based methods to show that ARF6 is present in human sperm, localizes to the acrosomal region, and is required for calcium and diacylglycerol-induced exocytosis. Results from pulldown assays show that ARF6 exchanges GDP for GTP in sperm challenged with different exocytic stimuli. Myristoylated and guanosine 5′-3-O-(thio)triphosphate (GTPγS)-loaded ARF6 (active form) added to permeabilized sperm induces acrosome exocytosis even in the absence of extracellular calcium. We explore the ARF6 signaling cascade that promotes secretion. We demonstrate that ARF6 stimulates a sperm phospholipase D activity to produce phosphatidic acid and boosts the synthesis of phosphatidylinositol 4,5-bisphosphate. We present direct evidence showing that active ARF6 increases phospholipase C activity, causing phosphatidylinositol 4,5-bisphosphate hydrolysis and inositol 1,4,5-trisphosphate-dependent intra-acrosomal calcium release. We show that active ARF6 increases the exchange of GDP for GTP on Rab3A, a prerequisite for secretion. We propose that exocytic stimuli activate ARF6, which is required for acrosomal calcium efflux and the assembly of the membrane fusion machinery. This report highlights the physiological importance of ARF6 as a key factor for human sperm exocytosis and fertilization.  相似文献   
46.
The phytochemicals plumbagin and juglone have recently been gaining importance because of their various pharmacological activities. In this study, these compounds are shown to induce concentration- and time-dependent toxicity in human peripheral blood lymphocytes via the apoptotic pathway. Flow cytometry data revealed the occurrence of about 28% early apoptotic cells after 6 h exposure to 10 μM plumbagin and 35% late apoptotic cells and about 43% sub-G1 population after 24 h. The cytotoxic effect of plumbagin was at least twofold higher than that of juglone as evidenced by the IC50 value for cytotoxicity. Characteristic apoptotic features such as chromatin condensation and apoptotic body formation were observed through TEM, and membrane blebbing and cell surface smoothening were seen in SEM studies. Generation of ROS was evidenced through the HPLC analysis of superoxide-specific 2-OH-E+ formation. In addition, a decrease in GSH levels parallel to ROS production was observed. Reversal of apoptosis in both NAC- and Tempol-pretreated cells indicates the involvement of both ROS generation and GSH depletion in plumbagin- and juglone-induced apoptosis. The mechanistic pathway involves a decrease in MMP; alterations in the levels of Bcl-2, Bax, and cytosolic cytochrome c; and PARP-1 cleavage subsequent to caspase-3 activation.  相似文献   
47.
48.
49.
Chk2 (checkpoint kinase 2) is a serine/threonine kinase that participates in a series of signaling networks responsible for maintaining genomic integrity and responding to DNA damage. The development of selective Chk2 inhibitors has recently attracted much interest as a means of sensitizing cancer cells to current DNA-damaging agents used in the treatment of cancer. Additionally, selective Chk2 inhibitors may reduce p53-mediated apoptosis in normal tissues, thereby helping to mitigate adverse side effects from chemotherapy and radiation. Thus far, relatively few selective inhibitors of Chk2 have been described and none have yet progressed into clinical trials. Here, we report crystal structures of the catalytic domain of Chk2 in complex with a novel series of potent and selective small molecule inhibitors. These compounds exhibit nanomolar potencies and are selective for Chk2 over Chk1. The structures reported here elucidate the binding modes of these inhibitors to Chk2 and provide information that can be exploited for the structure-assisted design of novel chemotherapeutics.  相似文献   
50.
The kinetics of phosphoryl exchange involving ATP and ADP have been investigated successfully by in vivo 31P magnetic resonance spectroscopy using magnetization transfer. However, magnetization transfer effects seen on the signals of ATP also could arise from intramolecular cross-relaxation. This relaxation process carries information on the association state of ATP in the cell. To disentangle contributions of chemical exchange and cross-relaxation to magnetization transfer effects seen in 31P magnetic resonance spectroscopy of skeletal muscle, we performed saturation transfer experiments on wild type and double-mutant mice lacking the cytosolic muscle creatine kinase and adenylate kinase isoforms. We find that cross-relaxation, observed as nuclear Overhauser effects (NOEs), is responsible for magnetization transfer between ATP phosphates both in wild type and in mutant mice. Analysis of 31P relaxation properties identifies these effects as transferred NOEs, i.e. underlying this process is an exchange between free cellular ATP and ATP bound to slowly rotating macromolecules. This explains the β-ATP signal decrease upon saturation of the γ-ATP resonance. Although this usually is attributed to β-ADP ↔ β-ATP phosphoryl exchange, we did not detect an effect of this exchange on the β-ATP signal as expected for free [ADP], derived from the creatine kinase equilibrium reaction. This indicates that in resting muscle, conditions prevail that prevent saturation of β-ADP spins and puts into question the derivation of free [ADP] from the creatine kinase equilibrium. We present a model, matching the experimental result, for ADP ↔ ATP exchange, in which ADP is only transiently present in the cytosol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号