首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   22篇
  国内免费   22篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   7篇
  2018年   13篇
  2017年   11篇
  2016年   12篇
  2015年   20篇
  2014年   24篇
  2013年   43篇
  2012年   8篇
  2011年   14篇
  2010年   14篇
  2009年   26篇
  2008年   32篇
  2007年   33篇
  2006年   27篇
  2005年   27篇
  2004年   15篇
  2003年   16篇
  2002年   14篇
  2001年   11篇
  2000年   19篇
  1999年   20篇
  1998年   9篇
  1997年   13篇
  1996年   5篇
  1995年   6篇
  1994年   9篇
  1993年   7篇
  1992年   3篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1986年   1篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1976年   1篇
  1974年   2篇
排序方式: 共有502条查询结果,搜索用时 15 毫秒
151.
α‐Dioxygenases (α‐DOX) are heme‐containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α‐DOX oxygenate a variety of 14–20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro‐R hydrogen from the α‐carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2O2). We determined the X‐ray crystal structures of wild type α‐DOX from Oryza sativa, the wild type enzyme in complex with H2O2, and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α‐DOX such that the carboxylate forms ionic interactions with His‐311 and Arg‐559. Thr‐316 aids in the positioning of carbon‐2 for hydrogen abstraction. Twenty‐five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2O2 structures provides insight into enzyme activation. The binding of H2O2 at the distal face of the heme displaces residues His‐157, Asp‐158, and Trp‐159 ~2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp‐158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp‐159 and Trp‐213 reorient, and the guanidinium group of Arg‐559 is repositioned near Tyr‐379, poised to interact with the carboxylate group of the substrate.  相似文献   
152.
The first isolated cytokinin, 6-furfurylaminopurine (kinetin or Kin), was identified almost 55 years ago. Its biological effects on plant cells and tissues include influences on such processes as gene expression, cell cycle, chloroplast development, chlorophyll biosynthesis, stimulation of vascular development, delay of senescence, and mobilization of nutrients. In the present study we prepared a series of eight N9-substituted Kin derivatives, and characterized them with available physicochemical methods such as CI+ mass spectrometry and 1H NMR spectroscopy. All compounds were tested in three classical cytokinin bioassays: a tobacco callus assay, an Amaranthus assay, and a senescence assay with excised wheat leaves. The ability of the compounds to interact with Arabidopsis cytokinin receptors CRE1/AHK4 and AHK3 was tested in a bacterial receptor assay. Prepared derivatives with certain substitutions of the N9-atom of the purine moiety enhanced the cytokinin activity of the parent compound in the bioassays to a remarkable degree but negatively affected its perception by CRE1/AHK4 and AHK3. The ability of compounds to delay the senescence of excised wheat leaves in both dark and light conditions, was highly correlated with their ability to influence membrane lipid peroxidation, which is a typical symptom of senescence. Our results were corroborated by gene expression profiling of those genes involved in cytokinin metabolism and perception, plant senescence, and the stress response, and suggest that prepared kinetin derivatives might be used as potent anti-senescence agents.  相似文献   
153.
Nitric oxide (NO) has been proposed to act as a factor delaying leaf senescence and fruit maturation in plants. Here we show that expression of a NO degrading dioxygenase (NOD) in Arabidopsis thaliana initiates a senescence-like phenotype, an effect that proved to be more pronounced in older than in younger leaves. This senescence phenotype was preceded by a massive switch in gene expression in which photosynthetic genes were down-regulated, whereas many senescence-associated genes (SAGs) and the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene ACS6 involved in ethylene synthesis were up-regulated. External fumigation of NOD plants with NO as well as environmental conditions known to stimulate endogenous NO production attenuated the induced senescence programme. For instance, both high light conditions and nitrate feeding reduced the senescence phenotype and attenuated the down-regulation of photosynthetic genes as well as the up-regulation of SAGs. Treatment of plants with the cytokinin 6-benzylaminopurin (BAP) reduced the down-regulation of photosynthesis, although it had no consistent effect on SAG expression. Metabolic changes during NOD-induced senescence comprehended increases in salicylic acid (SA) levels, accumulation of the phytoalexin camalexin and elevation of leaf gamma-tocopherol contents, all of which occurred during natural senescence in Arabidopsis leaves as well. Moreover, NO fumigation delayed the senescence process induced by darkening individual Arabidopsis Columbia-0 (Col-0) leaves. Our data thus support the notion that NO acts as a negative regulator of leaf senescence.  相似文献   
154.
Overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED) is known to cause abscisic acid (ABA) accumulation in leaves, seeds and whole plants. Here we investigated the manipulation of ABA biosynthesis in roots. Roots from whole tomato plants that constitutively overexpress LeNCED1 had a higher ABA content than wild-type (WT) roots. This could be explained by enhanced in situ ABA biosynthesis, rather than import of ABA from the shoot, because root cultures also had higher ABA content, and because tetracycline (Tc)-induced LeNCED1 expression caused ABA accumulation in isolated tobacco roots. However, the Tc-induced expression led to greater accumulation of ABA in leaves than in roots. This demonstrates for the first time that NCED is rate-limiting in root tissues, but suggests that other steps were also restrictive to pathway flux, more so in roots than in leaves. Dehydration and NCED overexpression acted synergistically in enhancing ABA accumulation in tomato root cultures. One explanation is that xanthophyll synthesis was increased during root dehydration, and, in support of this, dehydration treatments increased beta-carotene hydroxylase mRNA levels. Whole plants overexpressing LeNCED1 exhibited greatly reduced stomatal conductance and grafting experiments from this study demonstrated that this was predominantly due to increased ABA biosynthesis in leaves rather than in roots. Genetic manipulation of both xanthophyll supply and epoxycarotenoid cleavage may be needed to enhance root ABA biosynthesis sufficiently to signal stomatal closure in the shoot.  相似文献   
155.
A recombinant carotenoid cleavage dioxygenase from Vitis vinifera L. was produced by Escherichia coli as a fusion with the glutathione-S-transferase (GST) protein under different bacterial growth conditions. The enzyme production was monitored by a GST assay. Addition of Triton X-100 prior to bacterial cell disruption doubled the release of soluble protein. A simple spectrophotometric enzyme assay was developed to measure carotenoid cleavage activity using lutein as substrate. Enzyme activity showed a 26-fold increase with the addition of 10% (v/v) acetone in the reaction mixture.  相似文献   
156.
In this study, degradation of naphthalene and anthracene in water using ultraviolet (UV) light in the presence of polypropylene microfibers (PPM) modified with TiO2 was investigated using fluorescence analysis. KrCl (λrad = 222 nm) and XeCl (λrad = 308 nm) excilamps were used in a photoreactor. Phototransformation was studied for compounds in the presence of PPMs modified with TiO2 particles. The results indicated that the toxicants concentration was reduced by two orders of magnitude in the presence of PPMs. This reduction was due to effective adsorption of naphthalene and anthracene from water onto the surface of the PPMs. Exposure to the toxicant–water–PPM system to UV light led to the formation of fluorescent photoproducts.  相似文献   
157.
Morphine, first characterized in opium from the poppy Papaver somniferum, is one of the strongest known analgesics. Endogenous morphine has been identified in several mammalian cells and tissues. The synthetic pathway of morphine in the opium poppy has been elucidated. The presence of common intermediates in plants and mammals suggests that biosynthesis occurs through similar pathways (beginning with the amino acid l-tyrosine), and the pathway has been completely delineated in plants. Some of the enzymes in the mammalian pathway have been identified and characterized. Two of the latter steps in the morphine biosynthesis pathway are demethylation of thebaine at the O3- and the O6-positions, the latter of which has been difficult to demonstrate. The plant enzymes responsible for both the O3-demethylation and the O6-demethylation are members of the FeII/α-ketoglutarate-dependent dioxygenase family. Previous studies showed that human cytochrome P450 (P450) 2D6 can catalyze thebaine O3-demethylation. We report that demethylation of thebaine at the O6-position is selectively catalyzed by human P450s 3A4 and 3A5, with the latter being more efficient, and rat P450 3A2. Our results do not support O6-demethylation of thebaine by an FeII/α-ketoglutarate-dependent dioxygenase. In rat brain microsomes, O6-demethylation was inhibited by ketoconazole, but not sulfaphenazole, suggesting that P450 3A enzymes are responsible for this activity in the brain. An alternate pathway to morphine, oripavine O6-demethylation, was not detected. The major enzymatic steps in mammalian morphine synthesis have now been identified.  相似文献   
158.
Thiol dioxygenation is the initial oxidation step that commits a thiol to important catabolic or biosynthetic pathways. The reaction is catalyzed by a family of specific non-heme mononuclear iron proteins each of which is reported to react efficiently with only one substrate. This family of enzymes includes cysteine dioxygenase, cysteamine dioxygenase, mercaptosuccinate dioxygenase, and 3-mercaptopropionate dioxygenase. Using sequence alignment to infer cysteine dioxygenase activity, a cysteine dioxygenase homologue from Pseudomonas aeruginosa (p3MDO) has been identified. Mass spectrometry of P. aeruginosa under standard growth conditions showed that p3MDO is expressed in low levels, suggesting that this metabolic pathway is available to the organism. Purified recombinant p3MDO is able to oxidize both cysteine and 3-mercaptopropionic acid in vitro, with a marked preference for 3-mercaptopropionic acid. We therefore describe this enzyme as a 3-mercaptopropionate dioxygenase. Mössbauer spectroscopy suggests that substrate binding to the ferrous iron is through the thiol but indicates that each substrate could adopt different coordination geometries. Crystallographic comparison with mammalian cysteine dioxygenase shows that the overall active site geometry is conserved but suggests that the different substrate specificity can be related to replacement of an arginine by a glutamine in the active site.  相似文献   
159.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   
160.
The efficiency and kinetics of naphthalene biodegradation in a soil medium using Pleurotus ostreatus (a type of white rot fungus) in batch mode with and without the addition of oil palm fiber (OPF) as a nutrient are evaluated in this study. Three batches are considered in the biodegradation study: (i) control—spiked soil; (ii) spiked soil with fungus; and (iii) spiked soil with both fungus and OPF. Biodegradation is conducted over a period of 22 days for which soil naphthalene concentrations are determined with respect to microwave extraction and high-performance liquid chromatography (HPLC) analysis. The results indicate that inoculation with Pleurotus ostreatus significantly enhances soil naphthalene biodegradation to 84%, which is further enhanced upon the addition of OPF to 98% with respect to the degradation rate. The high carbon content in OPF (>40%) affords it the capacity to be a viable nutrient supplement for Pleurotus ostreatus, thereby enhancing the potential of Pleurotus ostreatus in the biodegradation of polycylic aromatic hydrocarbons (PAHs), and indicating the potential of OPF as a nutrient for PAH biodegradation. A relationship between OPF mass and the biodegradation rate constant has been determined to be linear according to the following equation: k = 0.0429 × OPF + 0.1291.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号