首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   283篇
  免费   25篇
  国内免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   9篇
  2019年   15篇
  2018年   13篇
  2017年   7篇
  2016年   13篇
  2015年   10篇
  2014年   14篇
  2013年   47篇
  2012年   6篇
  2011年   9篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   12篇
  2006年   8篇
  2005年   13篇
  2004年   12篇
  2003年   11篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
排序方式: 共有313条查询结果,搜索用时 151 毫秒
61.
Efficient DNA repair mechanisms frequently limit the effectiveness of chemotherapeutic agents that act through DNA damaging mechanisms. Consequently, proteins involved in DNA repair have increasingly become attractive targets of high‐throughput screening initiatives to identify modulators of these pathways. Disruption of the XRCC4‐Ligase IV interaction provides a novel means to efficiently halt repair of mammalian DNA double strand break repair; however; the extreme affinity of these proteins presents a major obstacle for drug discovery. A better understanding of the interaction surfaces is needed to provide a more specific target for inhibitor studies. To clearly define key interface(s) of Ligase IV necessary for interaction with XRCC4, we developed a competitive displacement assay using ESI‐MS/MS and determined the minimal inhibitory fragment of the XRCC4‐interacting region (XIR) capable of disrupting a complex of XRCC4/XIR. Disruption of a single helix (helix 2) within the helix‐loop‐helix clamp of Ligase IV was sufficient to displace XIR from a preformed complex. Dose‐dependent response curves for the disruption of the complex by either helix 2 or helix‐loop‐helix fragments revealed that potency of inhibition was greater for the larger helix‐loop‐helix peptide. Our results suggest a susceptibility to inhibition at the interface of helix 2 and future studies would benefit from targeting this surface of Ligase IV to identify modulators that disrupt its interaction with XRCC4. Furthermore, helix 1 and loop regions of the helix‐loop‐helix clamp provide secondary target surfaces to identify adjuvant compounds that could be used in combination to more efficiently inhibit XRCC4/Ligase IV complex formation and DNA repair. Proteins 2014; 82:187–194. © 2013 Wiley Periodicals, Inc.  相似文献   
62.
A new vancomycin (VCM)-eluting mixed bilayer niosome formulation was evaluated for the control of staphylococcal colonization and biofilm formation on abiotic surfaces, a niosome application not explored to date. Cosurfactant niosomes were prepared using a Span 60/Tween 40/cholesterol blend (1: 1: 2). Tween 40, a polyethoxylated amphiphile, was included to enhance VCM entrapment and confer niosomal surface properties precluding bacterial adhesion. VCM-eluting niosomes showed good quality attributes including relatively high entrapment efficiency (~50%), association of Tween 40 with vesicles in a constant proportion (~87%), biphasic release profile suitable for inhibiting early bacterial colonization, and long-term stability at 4°C for a 12-month study period. Niosomes significantly enhanced VCM activity against planktonic bacteria of nine staphylococcal strains. Using microtiter plates as abiotic surface, VCM-eluting niosomes proved superior to VCM in inhibiting biofilm formation, eradicating surface-borne biofilms, inhibiting biofilm growth, and interfering with biofilm induction by VCM subminimal inhibitory concentrations. Data suggest dual functionality of cosurfactant VCM-eluting niosomes as passive colonization inhibiting barrier and active antimicrobial-controlled delivery system, two functions recognized in infection control of abiotic surfaces and medical devices.  相似文献   
63.
The ability of microorganisms to `recognise' a change in the hydrophobicity/hydrophilicity balance of the surface was demonstrated using thermoresponsive poly(N-isopropylacrylamide) co-polymers with different Lower Critical Solution Temperatures. The polymers were grafted onto hydrolysed glass under well controlled conditions and the adhesion was followed using 13C-labelled Listeria monocytogenes. Attachment of the bacteria was found to be directly affected by the polymer transition from a hydrophilic to a hydrophobic state but by less than one order of magnitude.  相似文献   
64.
解淀粉芽胞杆菌PC2产抑菌物质培养基及发酵条件优化   总被引:2,自引:0,他引:2  
【目的】优化解淀粉芽胞杆菌PC2产抑菌活性物质发酵培养基及发酵条件。【方法】以马铃薯葡萄糖液体培养基为基础,依据发酵液对金黄色葡萄球菌抑菌圈的单因素试验结果,采用Box-Behnken响应面法优化发酵培养基,二次通用旋转组合设计,频率分析法优化发酵条件。【结果】影响发酵液抑菌活性的培养基主要组分为马铃薯、蔗糖和L-谷氨酸钠,最优发酵培养基配方为:马铃薯188.0 g/L,蔗糖22.0 g/L,L-谷氨酸钠1.80 g/L,培养基成本为0.81元/L;最佳发酵条件为:接种量6%、发酵温度30°C、装液量40 mL/250 mL、摇床转速185 r/min、发酵时间24 h、初始pH 7.0。优化后发酵液对金黄色葡萄球菌抑菌圈直径为30.82 mm,较优化前的18.22 mm增加了12.60 mm。【结论】优化后的培养基和发酵条件提高了解淀粉芽胞杆菌PC2发酵液的抑菌活性,为该菌株的工业化生产应用提供了依据。  相似文献   
65.
亚热带常绿树种对不同粒径颗粒物的滞留能力   总被引:2,自引:0,他引:2  
可吸入颗粒物和细颗粒物是大部分城市的首要污染物,对人体健康和环境都有重要影响;而城市植物能吸附大气颗粒物,进而有效降低大气颗粒物浓度。为了深入探究不同树种叶表面特征与自身滞尘效益之间的关系,该研究以浙江省三种常见城市绿化树种(青冈、冬青、红花檵木)为对象,采用重量法提取各样本在3个粒径上(8~100,2.5~8,0.45~2.5μm)的单位叶面积滞尘量(μg·cm~(-2)),并结合叶面积指数估测全株滞尘量。结果表明:三种供试植物叶片对颗粒物平均单位叶面积滞留量在30.4~63.7μg·cm~(-2)之间,而平均单木滞尘量每株在1.36-9.36 g之间。红花檵木因其叶表粗糙、具有绒毛等特征,对颗粒物(0.45~100μm)有最大的吸附能力(63.74±12.0μg·cm~(-2));对于大颗粒物(8~100μm)和细颗粒物(0.45~2.5μm),三种植物叶片均对其分别具有最大(40.9%~57.5%)、最小(15.6%~20.6%)的吸附能力;对于单木滞尘量,青冈因其具有较大叶面积指数等特征,对颗粒物总吸附效果更佳(每株9.36g)。该研究结果表明城市绿化树种对减缓大气颗粒物污染起到重要作用。  相似文献   
66.
This systematic review examines effects of surface texture on marine biofouling and characterizes key research methodologies. Seventy-five published articles met selection criteria for qualitative analysis; experimental data from 36 underwent quantitative meta-analysis. Most studies investigated fouling mechanisms and antifouling performance only in laboratory assays with one to several test species. Textures were almost exclusively a single layer of regularly arranged geometric features rather than complex hierarchical or irregular designs. Textures in general had no effect or an inconclusive effect on fouling in 46% of cases. However, effective textures more often decreased (35%) rather than increased (19%) fouling. Complex designs were more effective against fouling (51%) than were regular geometric features (32%). Ratios of feature height, width, or pitch to organism body length were significant influences. The authors recommend further research on promising complex and hierarchical texture designs with more test species, as well as field studies to ground-truth laboratory results.  相似文献   
67.
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.

Communicated by Ramaswamy H. Sarma  相似文献   

68.
Biofouling exerts a frictional and cost penalty on ships and is a direct cause of invasion by marine species. These negative consequences provide a unifying purpose for the maritime industry and biosecurity managers to prevent biofouling accumulation and transfer, but important gaps exist between these sectors. This mini-review examines the approach to assessments of ship biofouling among sectors (industry, biosecurity and marine science) and the implications for existing and emerging management of biofouling. The primary distinctions between industry and biosecurity in assessment of vessels biofouling revolve around the resolution of biological information collected and the specific wetted surface areas of primary concern to each sector. The morphological characteristics of biofouling and their effects on propulsion dynamics are of primary concern to industry, with an almost exclusive focus on the vertical sides and flat bottom of hulls and an emphasis on antifouling and operational performance. In contrast, the identity, biogeography, and ecology of translocated organisms is of highest concern to invasion researchers and biosecurity managers and policymakers, especially as it relates to species with known histories of invasion elsewhere. Current management practices often provide adequate, although not complete, provision for hull surfaces, but niche areas are well known to enhance biosecurity risk. As regulations to prevent invasions emerge in this arena, there is a growing opportunity for industry, biosecurity and academic stakeholders to collaborate and harmonize efforts to assess and manage biofouling of ships that should lead to more comprehensive biofouling solutions that promote industry goals while reducing biosecurity risk and greenhouse gas emissions.  相似文献   
69.
The adhesion of cells of Salmonella typhimurium to albite, biotite, felspar, magnetite and quartz was correlated to the presence of fimbriae and degree of hydrophobicity and charge of the bacterial surface. It was found that the presence of fimbriae resulted in a higher degree of adhesion compared to adhesion of nonfimbriated cells. The significance of the physico-chemical characteristics of fimbriae was shown by a direct linearity between high hydrophobicity of fimbriated cells and degree of adhesion to the mineral particles. Fimbriated cells exhibited higher negative as well as positive surface charge as compared to nonfimbriated cells. Adhesion to several of the minerals was shown to be independent of the extent of negative charges on the bacterial surfaces. A high degree of adhesion to biotite, possibly due to a combination of characteristics of the particles, was not related to either bacterial fimbriation or a physico-chemical characteristic of the bacterial surface. The results of the nonspecific adhesion observed are discussed in terms of available binding sites and distribution of physico-chemical characteristics on the bacterial cell surface structures.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号