首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7197篇
  免费   1317篇
  国内免费   2050篇
  10564篇
  2024年   96篇
  2023年   316篇
  2022年   220篇
  2021年   204篇
  2020年   436篇
  2019年   441篇
  2018年   517篇
  2017年   482篇
  2016年   477篇
  2015年   462篇
  2014年   478篇
  2013年   553篇
  2012年   389篇
  2011年   440篇
  2010年   313篇
  2009年   392篇
  2008年   388篇
  2007年   394篇
  2006年   376篇
  2005年   315篇
  2004年   287篇
  2003年   281篇
  2002年   284篇
  2001年   235篇
  2000年   205篇
  1999年   184篇
  1998年   164篇
  1997年   131篇
  1996年   133篇
  1995年   117篇
  1994年   123篇
  1993年   87篇
  1992年   98篇
  1991年   59篇
  1990年   59篇
  1989年   55篇
  1988年   51篇
  1987年   34篇
  1986年   39篇
  1985年   48篇
  1984年   29篇
  1983年   17篇
  1982年   37篇
  1981年   24篇
  1980年   19篇
  1979年   19篇
  1978年   17篇
  1976年   15篇
  1975年   6篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Kinetics of microbial growth with mixtures of carbon sources   总被引:11,自引:0,他引:11  
  相似文献   
22.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
23.
It is often suggested that gelatinous zooplankton may benefit from anthropogenic pressures of all kinds and in particular from climate change. Large pelagic tunicates, for example, are likely to be favored over other types of macrozooplankton due to their filter-feeding mode, which gives them access to small preys thought to be less affected by climate change than larger preys. In this study, we provide model-based estimate of potential community changes in macrozooplankton composition and estimate for the first time their effects on benthic food supply and on the ocean carbon cycle under two 21st-century climate-change scenarios. Forced with output from an Earth System Model climate projections, our ocean biogeochemical model simulates a large reduction in macrozooplankton biomass in response to anthropogenic climate change, but shows that gelatinous macrozooplankton are less affected than nongelatinous macrozooplankton, with global biomass declines estimated at −2.8% and −3.5%, respectively, for every 1°C of warming. The inclusion of gelatinous macrozooplankon in our ocean biogeochemical model has a limited effect on anthropogenic carbon uptake in the 21st century, but impacts the projected decline in particulate organic matter fluxes in the deep ocean. In subtropical oligotrophic gyres, where gelatinous zooplankton dominate macrozooplankton, the decline in the amount of organic matter reaching the seafloor is reduced by a factor of 2 when gelatinous macrozooplankton are considered (−17.5% vs. −29.7% when gelatinous macrozooplankton are not considered, all for 2100 under RCP8.5). The shift to gelatinous macrozooplankton in the future ocean therefore buffers the decline in deep carbon fluxes and should be taken into account when assessing potential changes in deep carbon storage and the risks that deep ecosystems may face when confronted with a decline in their food source.  相似文献   
24.
The effects of environmental variables, particularly irradiance, on the sinking rates of phytoplankton were investigated using cultures of Chaetoceros gracilis Schütt and C. flexuosum Mangin in laboratory experiments; these data were compared with results from assemblages in the open ocean and marginal ice zone of the Greenland Sea. In culture experiments both the irradiance under which the diatom was grown and culture growth rate were positively correlated with sinking rates. Sinking rates (ψ) in the Greenland Sea were smallest when determined from chlorophyll (mean ψchl= 0.14 m · d?1) and biogenic silica (ψsi= 0.14 m · d?1) and greatest when determined from particulate carbon (ψc= 0.55 m · d?1) and nitrogen (ψN= 0.64 m · d?1). Field measurements indicated that variations in sinking may be associated with changes in irradiance and nitrate concentrations. Because these factors do not directly affect water density, they must be inducing physiological changes in the cell which affect buoyancy. Although a direct response to a single environmental variable was not always evident, sinking rates were positively correlated with growth rates in the marginal ice zone, further indicating a connection to physiological processes. Estimats of carbon flux at stations with vertically mixed euphotic zones indicated that approximately 30% of the daily primary production sank from the euphotic zone in the form of small particulates. Calculated carbon flux tended to increase with primary productivity.  相似文献   
25.
Theoretically, there are three principal ways in which ecosystem processes might respond to reductions in species richness. These theories are reviewed, and then considered in the context of a study of the diversity of soil nematodes and termites in near-primary forest sites at Mbalmayo, Cameroon, and the contribution made by these two taxa to carbon fluxes (CO2 and CH4) from the forest floor. Nematode abundances average 2.04 × 106 m-2, and termites between 2933 and 6957 m-2. The site is the most species-rich yet investigated for both groups anywhere in the world, so that a very large number of species contribute to carbon fluxes. We speculate about how much redundancy might be built into the functioning of both assemblages, and point out the enormous difficulties of resolving such questions, and of producing such detailed species-inventories.  相似文献   
26.
Dinitrogen-fixing legumes are frequently assumed to be less water-use efficient than plants utilizing soil mineral N, because of the high respiratory requirements for driving N2 fixation. However, since respiration is assumed not to discriminate against 13C, any differences in water-use efficiency exclusively due to respiration should not be apparent in carbon isotope discrimination () values. Our objective was to determine if the source of N (N2 fixation versus soil N) had any effect on of field-grown grain legumes grown at different elevations. Four legume species, Glycine max, Phaseolus lunatus, P. vulgaris, and Vigna unguiculata, were grown on five field sites spanning a 633 m elevational gradient on the island of Maui, Hawaii. The legumes were either inoculated with a mixture of three effective strains of rhizobia or fertilized weekly with urea at 100 kg N ha-1 in an attempt to completely suppress symbiotic N2-fixing activity. In 14 of 20 analyses of stover and 12 of 15 analyses of seed values were significantly higher (p=0.10) in the inoculated plants than the N-fertilized plants. Nitrogen concentrations were generally higher in the fertilized treatments than the inoculated treatments. The different values obtained depending on N-source may have implications in using as an indicator of water-use efficiency or yield potential of legumes.  相似文献   
27.
Rhizodeposition under ambient and elevated CO2 levels   总被引:1,自引:0,他引:1  
As global CO2 levels rise, can soils store more carbon and so buffer atmospheric CO2 levels? Answering this question requires a knowledge of the rates of C inputs to soil and of CO2 outputs via decomposition. Below-ground inputs from roots are a major component of the C flow into soils but are still poorly understood. In this article, new techniques for measuring rhizodeposition are reviewed and discussed and the need for cross-comparisons between methods is identified. One component of rhizodeposition, root exudation, is examined in more detail and evidence is presented which suggests that current estimates of exudate flow into soils are incorrect. A mechanistic mathematical model is used to explore how exudate flows might change under elevated CO2.  相似文献   
28.
Gas phase composition effects on suspension cultures of Taxus cuspidata   总被引:2,自引:0,他引:2  
The effect of different concentrations and combinations of oxygen, carbon dioxide, and ethylene on cell growth and taxol production in suspension cultures of Taxus cuspidata was investigated using several factorial design experiments. Low head space oxygen concentration (10% v/v) promoted early production oftaxol. High carbon dioxide concentration (10% v/v) inhibited taxol production. The most effective gas mixture composition in terms of taxol production was 10% (v/v) oxygen, 0.5% (v/v) carbon dioxide, and 5 ppm ethylene. Cultures grown underambient concentration of oxygen had a delayed uptake of glucose and fructose compared to cultures grown under 10% (v/v) oxygen. Average calcium uptake rates into the cultured cells decreased and average phosphate uptake rates increased as ethylene was increased from 0 to 10 ppm. These results may indicate that gas composition alters partitioning of nutrients, which in turn affects secondary metabolite production. (c) 1995 John Wiley & Sons, Inc.  相似文献   
29.
The effect of cell size on growth rates and some cellular contents of Thalassiosira nordenskioeldii Cleve has been measured at 0 and 10 C. At 0 C the growth rate did not vary with cell size. The 2 smallest clones at this temperature had reduced growth rates because of the induction of sexuality in that size range. The clones grown at 10 C showed a significant negative relationship between growth rate and valve diameter with the cell surface area/volume ratio positively related to growth rate. At both temperatures the smaller cells had proportionately more carbon and nitrogen/unit cell volume. The amount of chlorophyll a and silica/unit cell surface area increased with increasing cell surface area at both 0 and 10 C. Both the C/N and C/chl a ratios showed no significant change with cell size at either temperature but there was a significant increase in the C/chl a ratio at 0 C. The C/Si ratio decreased with increasing cell size at both 0 and 10 C.  相似文献   
30.
Methodology is presented for the determination of growth yield (Y(g)) and maintenance coefficient (m) for carbon utilization of plant cells grown in suspension culture. Estimation of Y(g) and m requires measurements of specific growth rate (micro) and specific rate of substrate uptake (q) at different growth limiting substrate concentrations. Batch culture of tobacco cells did not permit evaluation of Y(g) and m because micro is constant and maximal during most of the growth cycle. In batch culture, the period of declining specific growth rate is extremely brief because of the rapid transition from logarithmic growth to stationary phase. This occurs because the K(m) for growth is relatively small compared to the initial sucrose concentration. Thus, when the substrate level reaches the K(m), the large mass of cells rapidly depletes the remaining substrate. In contrast, semicontinuous culture facilitates the determination of Y(g) and m because various steady-state growth rates can be achieved. Mathematical expressions were developed to determine the effective values of micro and q over the semicontinuous replacement interval. The validity of this approach was verified by conducting simulations using experimentally determined parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号