首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7199篇
  免费   1340篇
  国内免费   2026篇
  2024年   96篇
  2023年   316篇
  2022年   220篇
  2021年   204篇
  2020年   436篇
  2019年   441篇
  2018年   517篇
  2017年   482篇
  2016年   477篇
  2015年   462篇
  2014年   478篇
  2013年   554篇
  2012年   389篇
  2011年   440篇
  2010年   313篇
  2009年   392篇
  2008年   388篇
  2007年   394篇
  2006年   376篇
  2005年   315篇
  2004年   287篇
  2003年   281篇
  2002年   284篇
  2001年   235篇
  2000年   205篇
  1999年   184篇
  1998年   164篇
  1997年   131篇
  1996年   133篇
  1995年   117篇
  1994年   123篇
  1993年   87篇
  1992年   98篇
  1991年   59篇
  1990年   59篇
  1989年   55篇
  1988年   51篇
  1987年   34篇
  1986年   39篇
  1985年   48篇
  1984年   29篇
  1983年   17篇
  1982年   37篇
  1981年   24篇
  1980年   19篇
  1979年   19篇
  1978年   17篇
  1976年   15篇
  1975年   6篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
171.
The blue light dependent utilization of nitrate by green algae under common air and high irradiances, besides its assimilatory nature, is associated with the release of NO2 and NH4 + to the culture medium. If the CO2 content of the sparging air was increased up to 2%, previously excreted NO2 and NH4 + were rapidly assimilated. When under air and high irradiances the cell density in the culture reached values corresponding to 25 g Ch 1.ml-1, no further growth was observed and the highest values of NO3 consumption and NO2 and NH4 + release were attained. Besides low CO2 tensions, increasing NO3 concentrations in the medium stimulated the release of NO3 and NH4 +. Under CO2-free air the consumption of NO3 and the release of NO2 and NH4 + on a total N bases were almost stoichiometric and their rates saturated at much lower irradiances than under air. Under CO2-free air high rates of NO2 release were only observed under the blue radiations that were effectively absorbed by photosynthetically active pigments, i.e. 460 nm, but not under 404 and 630 nm radiations. However, the simultaneous illumination of the cells with 404 and 630 nm monochromatic light showed a remarkable synergistic effect on NO2 release.The results are discussed in terms of the close relationship between C and N metabolism, the photosynthetic reducing power required to convert NO inf3 sup± -N into R – NH2-N and the blue light activation of nitrate reductase.  相似文献   
172.
Aphanocapsa 6308 metabolizes both NaHCO3 and Na2CO3. The short term incorporation (5-s) metabolic pattern and the patterns of incorporation of bicarbonate for exponential versus stationary phase cultures differ, however. Cells were equilibrated for 10 min in air and distilled water prior to injection of either NaH14CO3 at pH 8.0, or Na2 14CO3 at pH 11.0. Hot ethanol extracts were analyzed via paper chromatography and autoradiography for products of CO2 fixation. At 5 s, malate (51.5%) predominates slightly as a primary bicarbonate fixation product over 3-phosphoglycerate (40.3%); 3-phosphoglycerate is the primary product of carbonate fixation. At 60 s, the carbonate and bicarbonate labelling patterns are similar. Cells in stationary phase fix in 5 s a greater proportion of bicarbonate into malate (36% vs. 14% for 3-phosphoglycerate) than do cells in exponential growth. Likewise, 60 s incorporations show a large amount of bicarbonate fixed into aspartate (30.9%) in stationary phase cells over that of exponential phase (11.6%). These data suggest an operative C4 pathway for purposes not related to carbohydrate synthesis but rather as compensation for the incomplete tricarboxylic acid cycle in cyanobacteria. The enhancement of both aspartate fixation and CO2 fixation into citrulline in stationary phase correlates with an increase in cyanophycin granule production which requires both aspartate and arginine.Nonstandard Abbreviations 3-PGA 3-phosphoglyceric acid - TCA tricarboxylic acid  相似文献   
173.
The effect of cell size on growth rates and some cellular contents of Thalassiosira nordenskioeldii Cleve has been measured at 0 and 10 C. At 0 C the growth rate did not vary with cell size. The 2 smallest clones at this temperature had reduced growth rates because of the induction of sexuality in that size range. The clones grown at 10 C showed a significant negative relationship between growth rate and valve diameter with the cell surface area/volume ratio positively related to growth rate. At both temperatures the smaller cells had proportionately more carbon and nitrogen/unit cell volume. The amount of chlorophyll a and silica/unit cell surface area increased with increasing cell surface area at both 0 and 10 C. Both the C/N and C/chl a ratios showed no significant change with cell size at either temperature but there was a significant increase in the C/chl a ratio at 0 C. The C/Si ratio decreased with increasing cell size at both 0 and 10 C.  相似文献   
174.
Summary The results of the Viking Biology experiments are best explained by non-biological phenomena: The interaction of the reagents with the materials comprising the regolith. Conditions of water activity, temperature, availability of carbon sources and others in most regions of the planet are too extreme for survival and growth of any known Earth microorganisms. Although the possibility persists that some very unusual form of life is somewhere on that planet the evidence is best interpreted as negative. Even though there is no evidence for current life on Mars, whether or not life ever originated there is not known.  相似文献   
175.
Abstract Carbon fluxes in photosynthesis and photorespiration of water stressed leaves have been analysed in a steady state model based on the ribulose diphosphate carboxylase (RuDP carboxylase) and RuDP oxygenase enzyme activities and the CO2 and O2 concentrations in the leaf. Agreement between predicted and observed photorespiration (Lawlor & Fock, 1975) and C flux in the glycollate pathway is good over much of the range of water stress, but not at severe stress. An alternative source of respiratory CO2 is suggested to explain the discrepancy. The model suggests that resistance to CO2 fixation is mainly in the carboxylation reactions, not in CO2 transport. Using the steady state model, the kinetics of 14C incorporation into photosynthetic and photorespiratory intermediates are simulated. The predicted rate of 14C incorporation is faster than observed and delay terms in the model are used to simulate the slow rates of mixing and metabolic reactions. Inactive pools of glycine and serine are suggested to explain the observed specific activities of glycine and serine. Three models of carbon flux between the glycollate pathway, the photosynthetic carbon reduction cycle and sucrose synthesis are considered. The most satisfactory simulation is for glycollate pathway carbon feeding into the PCR cycle pool of 3-phosphoglyceric acid which provides the carbon for sucrose synthesis. Simulation of the specific activity of CO2 released in photorespiration suggests that a source of unlabelled carbon may contribute to photorespiration.  相似文献   
176.
Abstract. Cells of the blue-green alga Coccochloris peniocystis , grown at air levels of CO2, were exposed to [l4C]bicarbonate in the light for periods of 0.5 to 2.0 s followed by exposure to unlabelled bicarbonate for longer periods of time in the light. The kinetics of tracer movement during these pulse-chase experiments demonstrate that the principal mechanism of CO2 fixation in this alga is the C3-pathway although an appreciable amount of the C4 acid aspartate is found as one of the initial products of photosynthesis. Degradation of the labelled aspartate revealed that after 20 s of illumination, over 95% of the radioactivity was located in the β-carboxyl of this C4 acid. This alga possesses little, if any, capacity for either the enzymatic decarboxylation of C4 acids or the regeneration of phosphoenolpyruvate (PEP) from pyruvate mediated by the enzyme pyruvate, Pi dikinase. These data further demonstrate the lack of a functional C4-pathway in this alga.  相似文献   
177.
Kinetics of uptake of inorganic carbon by the freshwater green alga Chlamydomonas reinhardtii Dang. suggest that rates of fixation may be enhanced at low tensions of CO2 by transport of bicarbonate from the cell surface to the chloroplast. Results are evaluated in the context of models that treat diffusion and reaction of dissolved inorganic carbon across a 3 dimensional finite boundary layer, and they are consistent with the claim that CO2 alone is the substrate used during carbon fixation. An alternative hypothesis, which presumes that both CO2 and bicarbonate are used as substrates, yields predictions which are inconsistent with the data. Instead, bicarbonate seems to act only as a vehicle for the transport of inorganic carbon into the cell, thereby adding its flux to that of CO2, and enhancing rates of synthesis that would otherwise be restricted by uptake of CO2 alone.  相似文献   
178.
Laminaria saccharina Lamour. sporophytes were grown in enriched and synthetic media through a range of nitrate concentrations, There was an approximately linear relationship between growth and nutrient concentration up to 10 μ substrate concentration. The half-saturation constant (K2) was ca. 1.4 μ NO3-. The internal levels of NO3- increased at substrate concentrations above 10 μM b>3- and reached levels several thousand times higher than the surrounding medium. Thus there is evidence for luxury consumption of NOsb>3-. The chlorophyll content and photosynthetic capacities of plants also increased with increasing external NO3- The ecological implications of this work are considered.  相似文献   
179.
The mechanism of photosynthetic carbon dioxide fixation in the green flagellate Dunaliella tertiolecta Butcher varies during growth in batch culture. Evidence for this change comes from three sources: i) algae from the stationary phase incorporated a greater proportion of the fixed carbon into amino arids and protein than did cells from the mid-exponential phase; ii) the activity of phosphoenolpyruvate carboxylase relative to that of ribulose-1, 5-di-phosphate carboxylase increased with age in batch culture; and, iii) cells from the stationary phase appeared to utilize the bicarbonate ion as the substrate for photosynthesis, whereas those from mid-exponential phase appeared to utilize fire carbon dioxide. These data suggest that a change of photosynthetic mechanism can occur within a single species of alga, depending on its physiological state.  相似文献   
180.
将水稻(Oryza sativa L.)幼苗悬浮培养于含有羧基化多壁碳纳米管MWCNTs-COOH(0、2.5、5.0、10.0 mg/L)、50 mmol/L混合盐(1NaCl:9Na2SO4:9NaHCO3:1Na2CO3),以及MWCNTs-COOH+混合盐的复合溶液中,10 d后检测叶片生理生化指标变化,研究MWCNTs-COOH复合盐碱胁迫对水稻幼苗的毒性及生态风险。结果显示,与对照组相比,MWCNTs-COOH单一组诱导下水稻叶片O2·-和H2O2的产生不明显,而混合盐组和混合盐+MWCNTs-COOH复合组均诱导了O2·-和H2O2产物的大量累积。MWCNTs-COOH与混合盐复合后,加剧了O2·-和H2O2的累积,并有明显的浓度效应。活性氧(ROS)作为信号分子在一定程度上诱导了各处理组部分抗氧化酶(SOD、CAT、POD、APX)活性的升高;与混合盐组相比,低浓度混合盐+MWCNTs-COOH复合组中叶绿素a和胡萝卜素含量呈一定程度的升高;MWCNTs-COOH与混合盐复合后,抑制了叶片中可溶性糖(SS)和脯氨酸(Pro)的合成,致使相对电导率(REC)和丙二醛(MDA)含量显著升高。上述抗氧化酶活性及叶绿素a和胡萝卜素含量的升高对缓解水稻叶片氧化损伤、维持正常的光合电子传递及对过剩光能的热耗散是有益的,是水稻幼苗重要的防御机制。本研究表明MWCNTs-COOH单一处理在一定程度上诱导了水稻叶片的氧化胁迫和应激响应,与混合盐复合后加剧了叶片的氧化胁迫和应激损伤。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号