首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1382篇
  免费   225篇
  国内免费   52篇
  2024年   9篇
  2023年   54篇
  2022年   55篇
  2021年   84篇
  2020年   140篇
  2019年   129篇
  2018年   100篇
  2017年   95篇
  2016年   104篇
  2015年   97篇
  2014年   105篇
  2013年   163篇
  2012年   78篇
  2011年   86篇
  2010年   35篇
  2009年   85篇
  2008年   66篇
  2007年   60篇
  2006年   47篇
  2005年   24篇
  2004年   14篇
  2003年   11篇
  2002年   7篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有1659条查询结果,搜索用时 15 毫秒
61.
A novel amperometric lactate biosensor was developed based on immobilization of lactate dehydrogenase onto graphene oxide nanoparticles‐decorated pencil graphite electrode. The enzyme electrode was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy (FTIR), and cyclic voltammetry at different stages of its construction. The biosensor showed optimum response within 5 s at pH 7.3 (0.1 M sodium phosphate buffer) and 35°C, when operated at 0.7 V. The biosensor exhibited excellent sensitivity (detection limit as low as 0.1 μM), fast response time (5 s), and wider linear range (5–50 mM). Analytical recovery of added lactic acid in serum was between 95.81–97.87% and within‐batch and between‐batch coefficients of variation were 5.04 and 5.40%, respectively. There was a good correlation between serum lactate values obtained by standard colorimetric method and the present biosensor (r = 0.99). The biosensor measured lactate levels in sera of apparently healthy subjects and persons suffering from lactate acidosis and other biological materials (milk, curd, yogurt, beer, white wine, and red wine). The enzyme electrode lost 25% of its initial activity after 60 days of its regular uses, when stored dry at 4°C.  相似文献   
62.
63.
64.
New, deoxyribonucleic acid (DNA) based compounds, functionalized with hexadecyltrimethylammonium chloride (CTMA) and lanthanide hydroxide nanoparticles were synthesized. The spectral measurements suggest that between the DNA‐CTMA complex and the lanthanide (III) ions a chemical interaction takes place. The obtained materials exhibit an improved fluorescence efficiency, showing a potential interest for application in photonics, and more particularly, in light emitting devices. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 613–617, 2016.  相似文献   
65.
In this work, a simple electrochemical immunosensor was developed for the detection of carcinoembryonic antigen (CEA) based on rhombic dodecahedral Cu2O nanocrystals–graphene oxide–gold nanoparticles (rCu2O–GO–AuNPs). GO as the template and surfactant resulting in rCu2O exhibit improved rhombic dodecahedral structure uniformity and excellent electrochemical performance. Moreover, GO was found to be able to effectively improve the long stability of rCu2O on the electrode response. Under optimal conditions, the immunosensor showed a low limit of detection (0.004 ng ml−1) and a large linear range (0.01–120 ng ml−1). This work presents a potential alternative for the diagnostic applications of GO-supported special morphology materials in biomedicine and biosensors.  相似文献   
66.
Here, an ultrasensitive label-free electrochemical aptasensor was developed for dopamine (DA) detection. Construction of the aptasensor was carried out by electrodeposition of gold–platinum nanoparticles (Au–PtNPs) on glassy carbon (GC) electrode modified with acid-oxidized carbon nanotubes (CNTs–COOH). A designed complementary amine-capped capture probe (ssDNA1) was immobilized at the surface of PtNPs/CNTs–COOH/GC electrode through the covalent amide bonds formed by the carboxyl groups on the nanotubes and the amino groups on the oligonucleotides. DA-specific aptamer was attached onto the electrode surface through hybridization with the ssDNA1. Methylene blue (MB) was used as an electrochemical indicator that was intercalated into the aptamer through the specific interaction with its guanine bases. In the presence of DA, the interaction between aptamer and DA displaced the MB from the electrode surface, rendering a lowered electrochemical signal attributed to a decreased amount of adsorbed MB. This phenomenon can be applied for DA detection. The peak current of probe (MB) linearly decreased over a DA concentration range of 1–30 nM with a detection limit of 0.22 nM.  相似文献   
67.
Virus‐like particles (VLPs) derived from nonenveloped viruses result from the self‐assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self‐assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N‐ and C‐terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant‐based production of nucleic acid‐free VLPs. Remarkably, expression of N‐ or C‐terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.  相似文献   
68.
Introduction: Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual’s metabolic and pathophysiologic state.

Areas covered: High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins.

Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.  相似文献   

69.
In this report, we prepared a novel mesoporous silica nanostructure for selective detection of fluoride through ultraviolet absorption and emission changes. In the sensing system, a silica coupling reagent (3‐(triethoxysilyl)propyl isocyanate) linked 1‐naphthylamine has been covalently grafted onto the mesopores of inorganic network. These specially designed nanospheres can recognize fluoride from other anions based on hydrogen bond interactions. This approach may provide new opportunities for designing related sensing systems with enhanced physical or chemical properties. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
70.
ZnS:Mn nanoparticles were prepared by a chemical precipitation method and characterized by X‐ray diffraction (XRD), field emission gun scanning electron microscope (FEGSEM), and high resolution transmission electron microscopy (HRTEM). Capping agent (mercaptoethanol) concentrations used were 0 M, 0.005 M, 0.01 M, 0.015 M, 0.025 M, 0.040 M, and 0.060 M, and resulted in nanoparticles sizes of 2.98 nm, 2.9 nm, 2.8 nm, 2.7 nm, 2.61 nm, 2.2 nm and 2.1 nm, respectively. The thermoluminescence (TL) glow curve was recorded by heating the sample exposed to UV‐radiation, at a fixed heating rate 1°C sec–1. The TL intensity initially increased with temperature, attained a peak value Im for a particular temperature, and then decreased with further increase in temperature. The peak TL intensity increased with decreasing nanoparticle size, whereas the temperature corresponding to the peak TL intensity decreased slightly with reducing nanocrystal size. As a consequence of increase in surface‐to‐volume ratio and increased carrier recombination rates, the TL intensity increased with decreasing nanoparticle size. It was found that, whereas activation energy slightly decreased with decreasing nanoparticle size, the frequency factor decreased significantly with reduction in nanoparticle size. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号