首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   37篇
  国内免费   5篇
  2024年   2篇
  2023年   10篇
  2022年   7篇
  2021年   7篇
  2020年   11篇
  2019年   10篇
  2018年   17篇
  2017年   11篇
  2016年   13篇
  2015年   8篇
  2014年   10篇
  2013年   16篇
  2012年   7篇
  2011年   6篇
  2010年   3篇
  2009年   12篇
  2008年   8篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1992年   1篇
排序方式: 共有178条查询结果,搜索用时 15 毫秒
151.
A novel amperometric biosensor for xanthine was developed based on covalent immobilization of crude xanthine oxidase (XOD) extracted from bovine milk onto a hybrid nanocomposite film via glutaraldehyde. Toward the preparation of the film, a stable colloids solution of core–shell Fe3O4/polyaniline nanoparticles (PANI/Fe3O4 NPs) was dispersed in solution containing chitosan (CHT) and H2PtCl6 and electrodeposited over the surface of a carbon paste electrode (CPE) in one step. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectrophotometry, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used for characterization of the electrode surface. The developed biosensor (XOD/CHT/Pt NPs/PANI/Fe3O4/CPE) was employed for determination of xanthine based on amperometric detection of hydrogen peroxide (H2O2) reduction at –0.35 V (vs. Ag/AgCl). The biosensor exhibited a fast response time to xanthine within 8 s and a linear working concentration range from 0.2 to 36.0 μM (R2 = 0.997) with a detection limit of 0.1 μM (signal/noise [S/N] = 3). The sensitivity of the biosensor was 13.58 μA μM−1 cm−2. The apparent Michaelis–Menten (Km) value for xanthine was found to be 4.7 μM. The fabricated biosensor was successfully applied for measurement of fish and chicken meat freshness, which was in agreement with the standard method at the 95% confidence level.  相似文献   
152.
Due to the high affinity with water molecules, amide compounds are easily contaminated by moisture; therefore, the water interference effect cannot be totally excluded from the amide-involved reactions. Thus, the perfect solution is to use the interference effect but not shield it in a real application. In this work, we introduced different contents of sodium acrylate (AAS) to scavenge water from the monomers of N-isopropylacrylamide (NIPAm) when copolymerized with TPA-Vinyl-4CN. Herein, water molecules play a role as nucleophilic reagents to attack highly active functional groups as –C=C–CN from TPA-Vinyl-4CN, leading to a blue emissive TPA-Vinyl-2CHO. From this study, we made a deep awareness of the interactions between three reaction partners of AAS and NIPAm as well as TPA-Vinyl-4CN. Our results clearly demonstrated the fact that water can be perfectly used and controlled by the water absorbent of AAS, developing a new approach to synthesizing multiple emission-coloured polymers by using only one luminogen of TPA-Vinyl-4CN.  相似文献   
153.
A magnetic nanoprobe was designed for imidacloprid by encapsulating nonconjugated polymer dots (NCPDs) and Fe3O4 nanoparticles in the covalent organic framework (COF). The fluorescence intensity of the COF-based nanocomposite is markedly suppressed by imidacloprid. As the absorption spectrum of imidacloprid was close to the band-gap of the NCPDs, and due to the presence of a nitro group (as an electron acceptor), the electrons can be easily transferred from the conduction band of NCPDs to the LUMO of imidacloprid, so fluorescence quenching was more likely to have been caused by the electron transfer process. The COF-based nanosensor was used for the determination of imidacloprid in the linear range 1.3–130 nM with a detection limit of 1.2 nM. The high sensitivity of the nanoprobe for imidacloprid is due to the combination of COF benefits (accumulation of the imidacloprid into the COF cavities) and the high adsorption ability of the Fe3O4 nanoparticles, which leads to further enrichment of imidacloprid. The magnetic nature of the nanocomposite enables the preconcentration and easy separation of the analyte, and so reduces matrix interference and lowers the detection limits. The practicality of this nanoprobe was confirmed by quantification of imidacloprid in the wastewater and fruit juice samples.  相似文献   
154.
Cardiac tissue engineering is an emerging approach for cardiac regeneration utilizing the inherent healing responses elicited by the surviving heart using biomaterial templates. In this study, we aimed to develop hydrogel scaffolds for cardiac tissue regeneration following myocardial infarction (MI). Two superabsorbent hydrogels, CAHA2A and CAHA2AP, were developed employing interpenetration chemistry. CAHA2A was constituted with alginate, carboxymethyl cellulose, (hydroxyethyl) methacrylate, and acrylic acid, where CAHA2AP was prepared by interpenetrated CAHA2A with polyvinyl alcohol. Both hydrogels displayed superior physiochemical characteristics, as determined by attenuated total reflection infrared spectroscopy spectral analysis, differential scanning calorimetry measurements, tensile testing, contact angle, water profiling, dye release, and conductivity. In vitro degradation of the hydrogels displayed acceptable weight composure and pH changes. Both hydrogels were hemocompatible, and biocompatible as evidenced by direct contact and MTT assays. The hydrogels promoted anterograde and retrograde migration as determined by the z-stack analysis using H9c2 cells grown with both gels. Additionally, the coculture of the hydrogels with swine epicardial adipose tissue cells and cardiac fibroblasts resulted in synchronous growth without any toxicity. Also, both hydrogels facilitated the production of extracellular matrix by the H9c2 cells. Overall, the findings support an appreciable in vitro performance of both hydrogels for cardiac tissue engineering applications.  相似文献   
155.
Engineered living materials (ELMs) have broad applications for enabling on-demand bioproduction of compounds ranging from small molecules to large proteins. However, most formulations and reports lack the capacity for storage beyond a few months. In this study, we develop an optimized procedure to maximize stress resilience of yeast-laden ELMs through the use of desiccant storage and 10% trehalose incubation before lyophilization. This approach led to over 1-year room temperature storage stability across a range of strain genotypes. In particular, we highlight the superiority of exogenously added trehalose over endogenous, engineered production in yielding robust preservation resilience that is independent of cell state. This simple, effective protocol enables sufficient accumulation of intracellular trehalose over a short period of contact time across a range of strain backgrounds without requiring the overexpression of a trehalose importer. A variety of microscopic analysis including µ-CT and confocal microscopy indicate that cells form spherical colonies within F127-BUM ELMs that have variable viability upon storage. The robustness of the overall procedure developed here highlights the potential for widespread deployment to enable on-demand, cold-chain independent bioproduction.  相似文献   
156.
One of the main benefits to using poly(ethylene glycol) (PEG) macromers in hydrogel formation is synthetic versatility. The ability to draw from a large variety of PEG molecular weights and configurations (arm number, arm length, and branching pattern) affords researchers tight control over resulting hydrogel structures and properties, including Young’s modulus and mesh size. This video will illustrate a rapid, efficient, solvent-free, microwave-assisted method to methacrylate PEG precursors into poly(ethylene glycol) dimethacrylate (PEGDM). This synthetic method provides much-needed starting materials for applications in drug delivery and regenerative medicine. The demonstrated method is superior to traditional methacrylation methods as it is significantly faster and simpler, as well as more economical and environmentally friendly, using smaller amounts of reagents and solvents. We will also demonstrate an adaptation of this technique for on-resin methacrylamide functionalization of peptides. This on-resin method allows the N-terminus of peptides to be functionalized with methacrylamide groups prior to deprotection and cleavage from resin. This allows for selective addition of methacrylamide groups to the N-termini of the peptides while amino acids with reactive side groups (e.g. primary amine of lysine, primary alcohol of serine, secondary alcohols of threonine, and phenol of tyrosine) remain protected, preventing functionalization at multiple sites. This article will detail common analytical methods (proton Nuclear Magnetic Resonance spectroscopy (;H-NMR) and Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-ToF)) to assess the efficiency of the functionalizations. Common pitfalls and suggested troubleshooting methods will be addressed, as will modifications of the technique which can be used to further tune macromer functionality and resulting hydrogel physical and chemical properties. Use of synthesized products for the formation of hydrogels for drug delivery and cell-material interaction studies will be demonstrated, with particular attention paid to modifying hydrogel composition to affect mesh size, controlling hydrogel stiffness and drug release.  相似文献   
157.
Directed evolution of oxidoreductases to improve their catalytic properties is being ardently pursued in the industrial, biotechnological, and biopharma sectors. Hampering this pursuit are current enzyme screening methods that are limited in terms of throughput, cost, time, and complexity. We present a directed evolution strategy that allows for large-scale one-pot screening of glucose oxidase (GOx) enzyme libraries in well-mixed homogeneous solution. We used GOx variants displayed on the outer cell wall of yeasts to initiate a cascade reaction with horseradish peroxidase (HRP), resulting in peroxidase-mediated phenol cross-coupling and encapsulation of individual cells in well-defined fluorescent alginate hydrogel shells within ~10 min in mixed cell suspensions. Following application of denaturing stress to whole-cell GOx libraries, only cells displaying GOx variants with enhanced stability or catalytic activity were able to carry out the hydrogel encapsulation reaction. Fluorescence-activated cell sorting was then used to isolate the enhanced variants. We characterized three of the newly evolved Aspergillus niger GOx enzyme sequences and found up to ~5-fold higher specific activity, enhanced thermal stability, and differentiable glycosylation patterns. By coupling intracellular gene expression with the rapid formation of an extracellular hydrogel capsule, our system improves high-throughput screening for directed evolution of H 2O 2-producing enzymes many folds.  相似文献   
158.
Three-dimensional (3D) cell culture models that provide a biologically relevant microenvironment are imperative to investigate cell–cell and cell–matrix interactions in vitro. Semi-synthetic star-shaped poly(ethylene glycol) (starPEG)–heparin hydrogels are widely used for 3D cell culture due to their highly tuneable biochemical and biomechanical properties. Changes in gene expression levels are commonly used as a measure of cellular responses. However, the isolation of high-quality RNA presents a challenge as contamination of the RNA with hydrogel residue, such as polymer or glycosaminoglycan fragments, can impact template quality and quantity, limiting effective gene expression analyses. Here, we compare two protocols for the extraction of high-quality RNA from starPEG–heparin hydrogels and assess three subsequent purification techniques. Removal of hydrogel residue by centrifugation was found to be essential for obtaining high-quality RNA in both isolation methods. However, purification of the RNA did not result in further improvements in RNA quality. Furthermore, we show the suitability of the extracted RNA for cDNA synthesis of three endogenous control genes confirmed via quantitative polymerase chain reaction (qPCR). The methods and techniques shown can be tailored for other hydrogel models based on natural or semi-synthetic materials to provide robust templates for all gene expression analyses.  相似文献   
159.
Molecular simulation techniques have been utilised to investigate the effect of cross-linker type on the structural and dynamical properties of a temperature-sensitive hydrogel, poly (N-isopropyl acrylamide) (PNIPAM) across its lower critical solution temperature (LCST). PNIPAM exhibits an LCST at ~305 K, above which it collapses and below which it is swollen. Molecular dynamics simulations of PNIPAM hydrogel cross-linked with N, N′-methylene bisacrylamide (BIS) and ethylene glycol dimethacrylate (EGD) cross-linkers were carried out below, at and above its LCST (namely 300, 305 and 310 K, respectively). Structural analysis indicates that the cross-linkers did not affect the temperature of the onset of the LCST, but did affect the degree of swelling and pore size distribution, where the EGD-cross-linked hydrogel exhibited a greater degree of structural change than that of the BIS-cross-linked hydrogel. We believe that this could be attributed to the longer chain length and more flexible nature of the EGD cross-linker compared to the BIS cross-linkers.  相似文献   
160.
Multifunctional phototheranostic nanocomposites are promising for early diagnosis and precision therapy of cancer. Aim to enhance their accuracy and efficiency, in this study, we develop a single-laser excited activatable phototheranostic nanocomposite (UCNPs-D-MQ): 808 nm-excited upconverting nanoparticles (UCNPs) as the matrix programmed assembly with amphipathic compound DSPE-PEG-COOH, a near-infrared absorbing polymer DPP and the pro-photosensitizer MBQB. Upon endocytosed by cancer cells and excited by the 808 nm laser, UCNPs-D-MQ could produce high-yield reactive oxygen species (ROS) as the results of singlet oxygen generation from transferring to methylene blue, GSH depletion and ROS generation from photoactivation. It was proven both in vitro and in vivo that the nanocomposites exhibits remarkable therapeutic efficacy as well as minimal photodamage to normal cells. These results reveal UCNPs-D-MQ as a robust theranostic agent for tumor phototherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号