排序方式: 共有178条查询结果,搜索用时 15 毫秒
101.
Dany J. Munoz‐Pinto Andrea Carolina Jimenez‐Vergara L. Marcela Gelves Rebecca E. McMahon Viviana Guiza‐Arguello Mariah S. Hahn 《Biotechnology and bioengineering》2009,104(4):821-831
A number of treatments are being investigated for vocal fold (VF) scar, including designer implants. The aim of the present study was to validate a 3D model system for probing the effects of various bioactive moieties on VF fibroblast (VFF) behavior toward rational implant design. We selected poly(ethylene glycol) diacrylate (PEGDA) hydrogels as our base‐scaffold due to their broadly tunable material properties. However, since cells encapsulated in PEGDA hydrogels are generally forced to take on rounded/stellate morphologies, validation of PEGDA gels as a 3D VFF model system required that the present work directly parallel previous studies involving more permissive scaffolds. We therefore chose to focus on hyaluronan (HA), a polysaccharide that has been a particular focus of the VF community. Toward this end, porcine VFFs were encapsulated in PEGDA hydrogels containing consistent levels of high M w HA (${\rm HA}_{{\rm H}{M}_{\rm W} } $ ), intermediate Mw HA (${\rm HA}_{{\rm I}{M}_{\rm W} } $ ), or the control polysaccharide, alginate, and cultured for 7 and 21 days. ${\rm HA}_{{\rm H}{M}_{\rm W} } $ promoted sustained increases in active ERK1/2 relative to ${\rm HA}_{{\rm I}{M}_{\rm W} } $ . Furthermore, VFFs in ${\rm HA}_{{\rm I}{M}_{\rm W} } $ gels displayed a more myofibroblast‐like phenotype, higher elastin production, and greater protein kinase C (PkC) levels at day 21 than VFFs in ${\rm HA}_{{\rm H}{M}_{\rm W} } $ and alginate gels. The present results are in agreement with a previous 3D study of VFF responses to ${\rm HA}_{{\rm I}{M}_{\rm W} } $ relative to alginate in collagen‐based scaffolds permissive of cell elongation, indicating that PEGDA hydrogels may serve as an effective 3D model system for probing at least certain aspects of VFF behavior. Biotechnol. Bioeng. 2009; 104: 821–831 © 2009 Wiley Periodicals, Inc. 相似文献
102.
Glucose biosensor based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite 总被引:1,自引:0,他引:1
The direct immobilization of glucose oxidase (GOD) on TiO2/SiO2 nanocomposite and its application as glucose biosensor were investigated. The room-temperature phosphorescence of TiO2/SiO2 nanocomposite can be quenched by hydrogen peroxide (H2O2). The detection of glucose may be accomplished by monitoring the formation of hydrogen peroxide which generated in the oxidation process of glucose with the catalysis of GOD. To our surprise, by using a 96-hole polyporous plate accessory of fluorescence spectrophotometer, the biosensor exhibits excellent linear response to glucose concentrations ranging from 1.0 × 10−9 to 1.0 × 10−2 M with a detection limit of 1.2 × 10−10 M. The TiO2/SiO2 nanocomposite can be used as both supporting material and signal transducer. The phosphorescence intensity and color of the biosensor change obviously and even could be observed with naked eyes by continuous addition of glucose. Based on the room-temperature phosphorescence of TiO2/SiO2 nanocomposite, a new method of solid substrate-room-temperature phosphorimetry (SS-RTP) for glucose determination is proposed. A glucose biosensor was fabricated with wide determination concentration range, low detection limit, high sensitivity, and fast response time. And the biosensor has been successfully applied to the determination of glucose in human blood serum. The coacervation of GOD enzyme and its interaction with TiO2/SiO2 nanocomposite enlarge the surface area and enhance the chemical stability of GOD. The nice biocompatibility, large surface area, good chemical stability and nontoxicity of the TiO2/SiO2 nanocomposite have made this material suitable for functioning as biosensor. 相似文献
103.
Oral biofilms play a crucial role in the development of dental caries and other periodontal diseases. Streptococcus mutans is one of the primary etiological agents in dental caries. Implant systems are regularly employed to replace missing teeth. Oral biofilms accumulate on these implants and are the chief cause of dental implant failure. In the present study, the potential of graphene/zinc oxide nanocomposite (GZNC) against the cariogenic properties of Streptococcus mutans was explored and the anti-biofilm behaviour of artificial acrylic teeth surfaces coated with GZNC was examined. Acrylic teeth are a good choice for implants as they are low cost, have low density and can resist fracture. Microscopic studies and anti-biofilm assays showed a significant reduction in biofilm in the presence GZNC. GZNC was also found to be nontoxic against HEK-293 (human embryonic kidney cell line). The results indicate the potential of GZNC as an effective coating agent for dental implants by efficiently inhibiting S. mutans biofilms. 相似文献
104.
Cludia S. M. Fernandes Ana S. Pina Armnio J. Moura Barbosa Inês Padro Filipa Duarte Ctia A. S. Teixeira Vítor Alves Paula Gomes Tiago G. Fernandes Ana M. G. Carvalho Dias Ana C. A. Roque 《Biotechnology journal》2019,14(11)
Affinity‐triggered assemblies rely on affinity interactions as the driving force to assemble physically crosslinked networks. WW domains are small hydrophobic proteins binding to proline‐rich peptides that are typically produced in the insoluble form. Previous works attempted the biological production of the full WW domain in tandem to generate multivalent components for affinity‐triggered hydrogels. In this work, an alternative approach is followed by engineering a 13‐mer minimal version of the WW domain that retains the ability to bind to target proline‐rich peptides. Both ligand and target peptides are produced chemically and conjugated to multivalent polyethylene glycol, yielding two components. Upon mixing together, they form soft biocompatible affinity‐triggered assemblies, stable in stem cell culture media, and display mechanical properties in the same order of magnitude as for those hydrogels formed with the full WW protein in tandem. 相似文献
105.
Brain stiffness changes in response to injury or disease. As a secondary consequence, glutamate is released from neurons and astroglia. Two types of glutamate receptors, N‐methyl‐d ‐aspartate (NMDA) and α‐Amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA) receptors, sense mechanotransduction, leading to downstream signaling in neurons. Recently, our group reported that these two receptors affect dendrite morphology in hippocampal neurons grown on compliant substrates. Blocking receptor activity has distinct effects on dendrites, depending on whether neurons are grown on soft or stiff gels. In the current study, we examine whether exposure to glutamate itself alters stiffness‐mediated changes to dendrites in hippocampal neurons. We find that glutamate augments changes seen when neurons are grown on soft gels of 300 or 600 Pa, but in contrast, glutamate attenuates changes seen when neurons are grown on stiff gels of 3,000 Pa. These results suggest that there is interplay between mechanosensing and glutamate receptor activation in determining dendrite morphology in neurons. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1128–1132, 2015 相似文献
106.
G. Urban G. Jobst F. Keplinger E. Aschauer O. Tilado R. Fasching F. Kohl 《Biosensors & bioelectronics》1992,7(10):733-739
An electrochemical glucose sensor has been integrated, together with a pH sensor, on a flexible polyimide substrate for in vivo applications. The glucose sensor is based on the measurement of H2O2 produced by the membrane-entrapped enzyme glucose oxidase (GOD). To minimize electrochemical interference, an electrode configuration was designed to perform differential measurements. The solid-state pH sensor employs a PVC-based neutral carrier membrane. The enzymes GOD and catalase were immobilized into two layers of photolithographically patterned hydrogels. The intended use of this device is the short-term monitoring of glucose and pH in intensive care units and operating theatres, especially for neurosurgical applications. The developed immobilization technique can also be used to create integrated multi-sensor chips for clinical analysers. The glucose and pH sensor exhibited excellent performance during tests in buffer solutions, serum and whole blood. 相似文献
107.
Bhanu P. S. Chauhan Swetha Matam Qiaxian R. Johnson Aarti Patel Kelly Moran Benjamin Onyechi 《Journal of visualized experiments : JoVE》2016,(108)
In this work, a facile one-pot reaction for the formation of metal nanoparticles in a water solution through the use of n-(2-aminoethyl)-3-aminosilanetriol is presented. This compound can be used to effectively reduce and complex metal salts into metal core nanoparticles coated with the compound. By controlling the concentrations of salt and silane one is able to control reaction rates, particle size, and nanoparticle coating. The effects of these changes were characterized through transmission electron microscopy (TEM), UV-Vis spectrometry (UV-Vis), Nuclear Magnetic Resonance spectroscopy (NMR) and Fourier Transform Infrared spectroscopy (FTIR). A unique aspect to this reaction is that usually silanes hydrolyze and cross-link in water; however, in this system the silane is water-soluble and stable. It is known that silicon and amino moieties can form complexes with metal salts. The silicon is known to extend its coordination sphere to form penta- or hexa-coordinated species. Furthermore, the silanol group can undergo hydrolysis to form a Si-O-Si silica network, thereby transforming the metal nanoparticles into a functionalized nanocomposites. 相似文献
108.
Susan Thompson Jessica Stukel Abrar AlNiemi Rebecca Kuntz Willits 《Journal of visualized experiments : JoVE》2013,(82)
This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Precipitation reactions offer several advantages over traditional microsphere fabrication techniques. Contrary to emulsion, suspension, and dispersion techniques, microgels formed by precipitation are of uniform shape and size, i.e. low polydispersity index, without the use of organic solvents or stabilizers. The mild conditions of the precipitation reaction, customizable properties of the microgels, and low viscosity for injections make them applicable for in vivo purposes. Unlike other fabrication techniques, microgel characteristics can be modified by changing the starting polymer molecular weight. Increasing the starting PEG molecular weight increased microgel diameter and swelling ratio. Further modifications are suggested such as encapsulating molecules during microgel crosslinking. Simple adaptations to the PEG microgel building blocks are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds. 相似文献
109.
Electrochemical monitoring of aflatoxin M1 in milk samples using silver nanoparticles dispersed on α‐cyclodextrin‐GQDs nanocomposite 下载免费PDF全文
Rana Shadjou Mohammad Hasanzadeh Mohammad Heidar‐poor Nasrin Shadjou 《Journal of molecular recognition : JMR》2018,31(6)
Aflatoxins are potential food pollutants produced by fungi. One of important toxins is aflatoxin M1 (AFM1). A great deal of concern is associated with AFM1 toxicity. In the present study, an innovative electrochemical interface for quantitation of AFM1 based on ternary signal amplification strategy was fabricated. In this work, silver nanoparticles was electrodeposited onto green and biocompatible nanocomposite containing α‐cyclodextrin as conductive matrix and graphene quantum dots as amplification element. Therefore, a multilayer film based on α‐cyclodextrin, graphene quantum dots, and silver nanoparticles was exploited to develop a highly sensitive electrochemical sensor for detection of AFM1. Fully electrochemical methodology was used to prepare a transducer on a glassy carbon electrode, which provided a high surface area toward sensitive detection of AFM1. The surface morphology of electrode surface was characterized by high‐resolution field emission scanning electron microscope. The proposed sensing platform provides a simple tool for AFM1 detection. Under optimized condition, the calibration curve for AFM1 concentration was linear in 0.015mM to 25mM with low limit of quantification of 2μM. The practical analytical utility of the modified electrode was illustrated by determination of AFM1 in unprocessed milk samples. 相似文献
110.
Activity of norA efflux pump has been known as a resistance mechanism to antibiotics like ciprofloxacin in Staphylococcus aureus. This study was carried out to assess the effect of biosynthesized NiFe2O4@Ag nanocomposite on expression of norA gene in Staphylococcus aureus. In this experimental study, 30 clinical samples were collected from patients hospitalized at different hospitals in Guilan Province, Iran. Then, clinical isolates of S. aureus were identified by standard microbiological tests. Antimicrobial susceptibility tests of clinical and standard strains of S. aureus were done by disk diffusion method according to CLSI guideline. Fourier transform infrared spectroscopy (FT‐IR) was used to analyze the various functional groups present in the biosynthesized NiFe2O4@Ag nanocomposite. This analysis confirmed the formation of alga proteins coated on magnetite nanocomposite. X‐ray diffraction (XRD) verified the crystalline structure of NiFe2O4@Ag and the deposition of silver on the surface of NiFe2O4. Energy dispersive X‐ray mapping (EDX‐map) analysis confirmed the existence of Ag, Ni, Fe and O in the final product. Scanning electron microscopy (SEM) confirmed that the nanocomposites were spherical in shape and Transmission electron microscopy (TEM) results revealed that the NiFe2O4@Ag had the particle size about 100 nm. Antibacterial activity of NiFe2O4@Ag alone and combined with ciprofloxacin was evaluated using the disk assay method, and minimum inhibitory concentration (MIC) by broth dilution method. Afterwards, the expression of norA efflux pump gene with and without of NiFe2O4@Ag nanocomposite and ciprofloxacin was evaluated by Real‐Time PCR. Real‐Time PCR results demonstrated that the expression of norA gene in the strains exposed to both NiFe2O4@Ag nanocomposite (1/4 MIC) and ciprofloxacin (1/8 MIC) significantly reduced in comparison to untreated strains. This study reveals that, when NiFe2O4@Ag nanocomposite is combined with ciprofloxacin, the inhibitory effect of ciprofloxacin increases against growth of S. aureus. Therefore, NiFe2O4@Ag nanocomposite can be considered as an effective factor to decrease the growth of S. aureus along with ciprofloxacin. 相似文献